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1 Preface

1 Preface

This report summarises the activities in research and teaching of the Chair of Applied Dynamics at
the University of Erlangen-Nuremberg between January 2013 and December 2013.

Part of LTD is the Independent Junior Research Group in the DFG Emmy Noether Programme
‘Simulation and optimal control of the dynamics of multibody systems in biomechanics and robotics’
that has been at the University of Kaiserslautern from May 2009 to March 2011. Research topics are
situated in the field of computational mechanics, in particular dynamics and applied mathematics
with focus on the simulation of human motion (everyday movements and sports) and robot dynamics
as well as the optimization and optimal control of their dynamics.
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3 Research

3 Research

3.1 Emmy Noether Independent Junior Research Group

The Emmy Noether Programme by the German Research Foundation (DFG) supports young re-
searchers in achieving independence at an early stage of their scientific careers. Between May 2009
and March 2011, the Emmy Noether Independent Junior Research Group ‘Simulation and optimal
control of the dynamics of multibody systems in biomechanics and robotics’ has been affiliated with the
University of Kaiserslautern. The group has been transferred to the University of Erlangen-Nuremberg
in April 2011 being now part of the Chair of Applied Dynamics.

3.2 Bionicum

The Bavarian Environment Agency (LfU) (being the central authority for environmental protection
and nature conservation, geology and water resources management) has established the centre for
bionics ‘bionicum’ in 2012, consisting of a visitors centre in the Tiergarten of the City of Nuremberg
with a permanent exhibition and three research projects with a total financial volume of eight million
Euro. One of the projects investigates artificial muscles. The modeling and simulation of the dielectric
elastomer actors is developed at the LTD while the Institute for Factory Automation and Production
Systems (FAPS) works on the fabrication.

3.3 Cooperation partners

Besides numerous worldwide cooperations with scientists in academia, the LTD is in contact with other
institutions and industrial partners. The LTD cooperates with the Fraunhofer Institute for Industrial
and Economical Mathematics (ITWM) in Kaiserslautern on common interests like biomechanics and
nonlinear rod dynamics for wind turbine rotor blades.

3.4 Scientific reports

The following pages present a short overview on ongoing research projects pursued at the Chair of
Applied Dynamics. These are partly financed by third-party funding (German Research Foundation
(DFG), Bavarian Environment Agency (LfU)) and in addition by the core support of the university.

Research topics

Numerical experiments for viscoelastic Cosserat rods with Kelvin-Voigt damping
Holger Lang, Sigrid Leyendecker, Joachim Linn

On frequency estimations in phase fitted variational integrators for the general N-body problem
Odysseas T. Kosmas, Sigrid Leyendecker

Computing time investigations of variational multirate systems
Tobias Gail, Sigrid Leyendecker

Optimal control of standing high and long jumps
Michael W. Koch, Sigrid Leyendecker

Lie group variational integrators with quaternion parametrization of rotations
Thomas Leitz, Sigrid Leyendecker
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3 Research

On optimal control simulations of throwing
Ramona Maas, Sigrid Leyendecker

Identifying various types of Pareto sets in multiobjective optimal control of multibody dynamics
Maik Ringkamp, Sigrid Leyendecker, Sina Ober-Blöbaum

Finite element modelling of dielectric elastomers
Tristan Schlögl, Sigrid Leyendecker

Numerical experiments for viscoelastic Cosserat rods with Kelvin-Voigt damping

Holger Lang, Sigrid Leyendecker, Joachim Linn

Geometrically exact rod models of Cosserat type [5] still provide an interesting topic of research in
computational mechanics. In realistic applications, simulation models for computing the transient
response of structural members to dynamic excitations have to account for dissipative effects. In
particular, in the case of geometrically exact rods, any approach to model viscous damping requires
the inclusion of a frame-indifferent viscoelastic constitutive model already on the level of the continuum
formulation of the structural model, such that large displacements and finite rotations can be handled
properly.

The configuration of a Cosserat rod is uniquely defined by its centerline ϕ(s, t) ∈ R
3 of mass centroids

and its orthonormal, right-handed frame field R(s, t) ∈ SO(3). Always, 0 ≤ s ≤ L denotes the
arclength parameter, t denotes the time. We write ′ = ∂s and ˙ = ∂t for the corresponding partial
derivatives. For the sake of simplicity, we assume that the rod is straight in its undeformed reference
configuration. Then, the material strain vector is defined by Γ = R⊤∂sϕ−e3. The material curvature
vector K ∈ R

3 is defined as the unique axial vector corresponding to the skew symmetric tensor
R⊤∂sR ∈ so(3).

In [2], we formulate a Kelvin-Voigt type constitutive model by adding viscous contributions to the
material stress resultants (forces) F and stress couples (momenta) M . These are assumed to be
proportional to the rates Γ̇ and K̇ of the material strain and curvature measures of the rod. In the
effective material constitutive equations

F = CΓΓ+VΓΓ̇ and M = CKK +VKK̇, (1)

where CΓ = diag(GA,GA,EA), CK = diag(EI1, EI2, GJ), VΓ = diag(ηGA, ηGA, ηEA), VK =
diag(ηEI1, ηEI2, ηGJ), the elastic properties of the rod are determined by the effective stiffness param-
eters GA, EA, EI1, EI2 and GJ in terms of the geometric data A, I1, I2 and J and the extensional
(Young’s) modulus E and shear modulus G. A denotes the area of the cross section, I1 and I2 denote
its geometric momenta of inertia. J = I1 + I2 is the polar moment of inertia.

In contribution [3], we present a derivation of the Kelvin-Voigt rod model from three-dimensional con-
tinuum theory. In addition to these effective stiffness parameters, we derive explicit formulas for the
damping parameters of the model given by the effective viscous parameters ηGA, ηEA, ηEI1, ηEI2 and
ηGJ , again in terms of the geometry data and the extensional and shear viscosity ηE and ηG. These
damping parameters model the integrated cross-sectional viscous damping behaviour associated to the
basic deformation modes (extension, transverse shearing, bending and torsion) in the same way as the
well known stiffness parameters model the corresponding elastic response. Further, it is derived from
three-dimensional elasticity theory that for a linear, isotropic and homogeneous viscoelastic material
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with Kelvin-Voigt damping, the internal forces resp. momenta are related to the strain resp. curvature
according to (1).

With the spatial force f = RF and spatial moment m = RM , the dynamic balance equations take
the well-known form {

̺A ϕ̈ = ∂sf
̺Iω̇ = ∂sm+ ∂sϕ× f − ̺ω × Iω

, (2)

where I(s, t) is the geometric moment of inertia tensor, ω(s, t) is the spatial angular velocity and ̺
denotes the density [5].

In [4], we present first results of such a systematic investigation obtained from viscous and dynamic
simulations. Here, we study the influence of the viscosity ηE on extensional vibrations as an example.
In practical applications, extensional oscillations usually are of subordinate importance. Therefore, we
are looking for some ‘critical’ value ηE,cr that separates oscillatory from purely viscous behaviour. In
linear structural dynamics, the concept of modal damping is well-established [1]. The aim is to mimic
this concept and to transfer it to the nonlinear regime. The idea is to linearise the equations of motion
(2) for an undeformed, straight rod and then to perform complex modal analysis. Linearisation yields

̺A ü = ∂s
(
EAu′ + ηEAu̇

′
)
, (3)

where u is the (small) extensional displacement. For ηE = 0, the extensional beam (3), is thorougly
discussed in [1]. If we assume that the material and geometry data are constant along the rod, (3)
becomes

̺ü = Eu′′ + ηE u̇
′′.
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Figure 1: Extensional strains during a typical nonlinear dynamic motion. The undamped, first axial
eigenfrequency ω0 = 105.9 rad s−1 ≃ 16.9Hz (left) is critically damped out (right).

With the ansatz u(s, t) = U(s)eλt with a complex frequency λ and an unknown complex valued mode
shape function U(s), we obtain U ′′(s) = µ2U(s), where µ2(E + ηEλ) = ̺λ2. The general solution of
this differential equation is given by U(s) = C+e

µs+C−e
−µs. For boundary conditions, where u(0) = 0

and u′(L) = 0, it follows that C+ = −C−. Therefore, cosh(µL) = 0 and µ = µn = (2n+1)π
2L i with an

integer n. Solving the remaining quadratic equation for λ, we obtain the complex eigenfrequency
λ = λn,± = 1

2̺ (ηEµ
2
n±µn(η

2
Eµ

2
n + 4E̺)1/2) for each such n. Now, the n-th mode is critically damped,

if the n-th radicand vanishes. Therefore, any choice ηE larger than the critical extensional viscosity

ηE,cr =
4L

π

√

E̺ (4)

should damp out all oscillations resulting from extensional excitement. This is in fact the case, as the
following example demonstrates.
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A rod, made of rubber-like material, is subjected to its own gravitational force so that it performs
(large) nonlinear bending and (small) extensional oscillations. The parameters are chosen as E = 5.00·
106 Nm−2, A = 7.85·10−5 m2, G = 1.67·106 Nm−2, I1 = I2 = 4.91·10−10 m4 and ̺ = 1.10·103 kgm−3.
Figure 1 shows the extensional strain 〈Γ,e3〉 for each of the rod segments as a function of time. The
oscillations of the ‘first extensional eigenfrequency’ are clearly visible in the left picture, where ηE = 0.
For the choice ηE = ηE,cr = 9.44 · 105 Nm−2 s according to (4) precisely these oscillations are damped
out, as can be seen in the right plot in Figure 1. The remaining transients – their frequency is much
smaller – result from the gross overall bending of the rod.

For the numerical example in this article, we use a spatial discretisation scheme on a staggered grid,
proposed in [2]. More numerical examples can be found in [4].
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On frequency estimations in phase fitted variational integrators for the general N-body
problem

Odysseas Kosmas, Sigrid Leyendecker

One of the most difficult problems in the numerical solution of ordinary differential equations is the
development of methods for simulating highly oscillatory systems. Standard numerical schemes can
require a huge number of time steps to track the oscillations, and even with small step sizes they
can alter the dynamics, unless the method is chosen carefully. For that, it is useful to introduce
geometric integrators, that is, numerical schemes which preserve some features of geometric nature
of the dynamical systems. Usually, these integrators can run in simulations for long time with lower
spurious effects (for instance, better energy behavior for conservative systems) than the traditional
ones [1, 2].

For the derivation of high order variational integrators, we need to recall discrete variational calculus,
see [1] and references therein. A discrete Lagrangian is a map Ld : Q×Q → R defined on two copies
of the configuration manifold Q, which may be considered as an approximation of a continuous action
with Lagrangian L : TQ → R, i.e. Ld(qk, qk+1) ≈

∫ tk+1

tk
L(q, q̇)dt in the time interval [tk, tk+1] ⊂

R. The action sum Sd : QN+1 → R, N ∈ N corresponding to the Lagrangian Ld is defined as
Sd(γd) =

∑N−1
k=0 Ld(qk, qk+1) with γd = (q0, . . . , qN ) representing the discrete trajectory. The discrete

Hamilton’s principle states that a motion γd of the discrete mechanical system extremizes the action
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sum, i.e. δSd = 0. By differentiation and rearrangement of the terms and having in mind that both
q0 and qN are fixed, the discrete Euler-Lagrange equations (DEL) are obtained [1]

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0, k = 1, . . . , N − 1 (1)

where the notation DiLd indicates the slot derivative with respect to the i-th argument of Ld.

Discrete Lagrangian using interpolation techniques

To construct high order methods, we approximate the action integral along the curve segment between
qk and qk+1 using a discrete Lagrangian that depends only on the end points. We obtain expressions
for configurations qjk and velocities q̇jk for j = 0, ..., S − 1, S ∈ N at time tjk ∈ [tk, tk+1] by expressing

tjk = tk + Cj
kh for Cj

k ∈ [0, 1] such that C0
k = 0, CS−1

k = 1 using

qjk = g1(t
j
k)qk + g2(t

j
k)qk+1, q̇jk = ġ1(t

j
k)qk + ġ2(t

j
k)qk+1 (2)

where h ∈ R is the time step. We choose functions

g1(t
j
k) = sin

(

u−
tjk − tk

h
u

)

(sinu)−1, g2(t
j
k) = sin

(

tjk − tk
h

u

)

(sinu)−1 (3)

to represent the oscillatory behavior of the solution, see [3, 4]. For continuity, g1(tk+1) = g2(tk) = 0
and g1(tk) = g2(tk+1) = 1 is required.

For any choice of interpolation in (2), we define the discrete Lagrangian by the weighted sum
Ld(qk, qk+1) = h

∑S−1
j=0 wjL(q(tjk), q̇(t

j
k)), where it can be easily proved that for maximal algebraic

order,
∑S−1

j=0 wj(Cj
k)

m = 1
m+1 where m = 0, 1, . . . , S − 1 and k = 0, 1, . . . , N − 1 must hold, see [3, 4].
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Figure 1: Harmonic oscillator with ω = 1 and S = 5. Global errors for (a) the position and (b)
the momentum using five step sizes h for the GauLe4, Cheby4 [6] and the trigonometric
interpolation method.

For the case of the harmonic oscillator with frequency ω, the Lagrangian function is L = q̇2/2−ω2q2/2,
which leeds to discrete Euler-Lagrange equations (1)

qk+1 +

S−1∑

j=0

wj

[

ġ1(t
j
k)

2 + ġ2(t
j
k)

2 − ω2
(
g1(t

j
k)

2 + g2(t
j
k)

2
)

]

S−1∑

j=0

wj

[

ġ1(t
j
k)ġ2(t

j
k)− ω2g1(t

j
k)g2(t

j
k)

] qk + qk−1 = 0. (4)
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Figure 2: Harmonic oscillator with ω = 1. CPU time versus position error (absolute value) for method
using trigonometric interpolation for S = 5 and for the GauLe4, Cheby4 [6].

To test the numerical convergence of the proposed method, we choose the initial conditions (q0, p0) =
(2, 2) and the time interval [0, 3] as in [6]. The global errors for the position and momentum components
at t = 3 for time steps h ∈ {0.01, 0.05, 0.1, 0.5, 1} are compared to those of [6], i.e. Cheby4 and GauLe4
for the case of the harmonic oscillator with ω = 1, see Figure 1. While all methods are of the same
order four, for all the step sizes that are tested, the smallest errors in position and momentum are
obtained with the phase fitted method derived using trigonometric interpolation, i.e. for u = ωh, see
also Figure 2.

Frequency estimation for mass points motion in three dimensions

Applying the interpolation technique with the above trigonometric expressions, the parameter u can
be chosen as u = ωh [3, 4]. For problems that include a constant and known domain frequency ω
(such as the harmonic oscillator) the parameter u can be easily computed. For the solution of orbital
problems of the general N -body problem, where multiple time-dependent frequencies are present, a
new parameter u must be defined by estimating the actual frequency of the motion of any moving
point mass.

For that, we consider the general case of N masses moving in three dimensions. If qi(t) for i = 1, . . . , N

is a representation of the i-th mass trajectory, it’s curvature can be computed as ki(t) =
q̇i(t)×q̈i(t)
|q̇i(t)|3

. The

magnitude of the velocity of the i-th mass is |q̇i(t)|. After a time step h, the angular displacement of
that mass is h|q̇i(t)×q̈i(t)|/|q̇i(t)|

2, which gives the following expression for each mass’ actual frequency

ωi(t) =
|q̇i(t)× q̈i(t)|

|q̇i(t)|2
. (5)

For the specific case of physical problems that can be described using the Lagrangian L(q, q̇) =
1
2 q̇

TM(q)q̇ − V (q), where M(q) is a symmetric positive definite mass matrix and V is a potential
function, the continuous Euler-Lagrange equations areM(q)q̈ = −∇V (q). For that case, the frequency
(5) for the i-th body at time tk, k = 1, . . . , N can be estimated as

ωi(tk) =

∣
∣
∣M−1(qk)pk ×

(
M−1(qk)pk−M−1(qk−1)pk−1

h

)∣
∣
∣

|M−1(qk)pk|
2 , (6)

where pk is the conjugate momentum defined using the discrete Legendre transform [1]. The above
frequency must also be estimated at the initial time t0 (with given initial positions and momenta q̄0
and p̄0 respectively), using the continuous Euler-Lagrange equation at that time we obtain

ωi(t0) =

∣
∣M−1(q̄0)p̄0 ×

(
−M−1(q̄0)∇V (q̄0)

)∣
∣

|M−1(q̄0)p̄0|
2 . (7)

Equations (6) and (7) yield an estimated frequency for each mass in general N -body problems.
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Figure 3: The estimated frequency (6) for the numerical integration of the complete solar system
problem for 106 days, using trigonometric interpolation with S = 3 and h = 1 day for all
the planets.

Frequency estimation for the solar system problem

For a numerical test of frequency estimations in phase fitted variational integrators, the numerical
solution of the complete solar system is regarded, i.e. the Lagrangian is L(q, q̇) = 1

2

∑11
i=1miq̇

2
i +

∑11
i=1,j=1,i 6=j G

mimj

||qi−qj ||
where G is the gravitational constant [2]. The estimated parameter ωi,

i = 1, . . . , 11 at every time step is plotted in Figure 3. In that, even though the resulting frequency of
the Sun’s motion is not so stable (that comes from the type of the motion that Sun is following) for all
other planets, the estimated frequency is remarkable stable, even for the 106 integration days. That
frequency result arises from the elliptic orbit that planets are following subject to Sun’s position.

Furthermore, Figure 5(a) shows the calculated positions of the planets using trigonometric interpola-
tion functions using a time step equal to one day for S = 3 intermediate points while Figure 5(b) shows
the calculated positions for the Earth-Moon system. The gray shaded area represents the Moon’s po-
sitions at every 10-th day. Although the results presented here are for 106 days and the time step is
rather big (when compared to the period of motion of the planets close to Sun) the good behavior of
the method can be observed. At last, for this numerical test, the evolution of the kinetic, potential and
total energy of the system is shown in Figure 4, where it is clear that, even for long term integration
processes, the energy behavior is good and stable.
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Figure 4: Kinetic, potential and total energy evolution for the numerical integration of the solar system
problem for 1 million days, using trigonometric interpolation with S = 3 and h = 1 day.
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Figure 5: Orbits of the solar system problem for 1 million days using trigonometric interpolation
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Computing time investigations of variational multirate systems

Tobias Gail, Sigrid Leyendecker, Sina Ober-Blöbaum

We investigate the behavior of variational multirate integration. For mechanical systems with dynam-
ics on varying time scales, the numerical integration has to comply with contradicting requirements.
On the one hand, to guarantee a stable integration of the fast motion, we need tiny step sizes. On
the other hand, for the slow motions, a larger time step size is accurate enough. Furthermore, too
small time steps increase the computing time unnecessarily, especially for costly function evaluations.
For this, multirate systems split the system into subsystems [1] which can be solved with different
methods [4]. For the multirate scheme we use two time step sizes in the framework described as varia-
tional multirate integration [3] which is developed on the basis of variational integrators [2] With this
approach, we expect less computing time and demonstrate that this is the case by means of numerical
examples. The example systems are the Fermi-Pasta-Ulam Problem (FPU) presented in Figure 2 and
a simple atomistic model (SAM) illustrated in Figure 1, all consisting of multiple mass points and
springs of varying stiffness while the latter one contains rigid links described by holonmic constraints.

Let a mechanical system be described by a Lagrangian with a configuration vector q(t) ∈ Q ⊆ R
n

with Q a configuration manifold and a velocity vector q̇ ∈ TQ ⊆ R
n on the tangent space TQ.

Also, let the mechanical system be constrained by the mc-dimensional holonomic function of con-
straints requiring g(q) = 0. Now, let the mechanical system contain fast and slow dynamics. Let
this be characterized by the possibility to split the variables into ns slow and nf fast variables with
q = (qs, qf ) and n = ns + nf . Furthermore, we assume that we can split the potential energy into a
slow potential V (q) and a fast potential W (qf ). The action S is the time integral of the Lagrangian
L(q, q̇) = T (q̇) − V (q) −W (qf ). Via Hamilton’s principle requiring stationarity of the action δS = 0
the constrained multirate Euler-Lagrange equations are derived.

d

dt

∂T

∂q̇s
−

∂V

∂qs
−

(
∂g

∂qs

)T

· λ = 0

d

dt

∂T
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−
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∂qf
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∂qf
−
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∂qf
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Figure 1: The simple atomistic model with
slow and fast variables.

Figure 2: FPU with 6 masses and slow and fast
variables.

Figure 3: Macro and micro time grid.
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Here T denotes the kinetic energy and λ the Lagrangian multiplier. To approximate the solution,
rather than choosing one time grid we choose two time grids. Figure 3 shows such a time grid with
macro time grid and and micro time grid. Here, the macro time step is ∆T , the micro time step is ∆t
and ∆T ≥ ∆t holds.

The macro time grid provides the domain for the discrete slow variables qsd = {qsk}
N
k=0 with qsk ≈ qs(tk),

while the micro time grid provides the domain for the discrete fast variables qfd = {{qf,mk }pm=0}
N−1
k=0

with qf,mk ≈ qf (tmk ) and the discrete Lagrangian multipliers λd = {{λm
k }pm=0}

N−1
k=0 with λm

k ≈ λ(tmk ).

The discrete action Sd approximates the continuos action S. Via a discrete form of Hamilton’s prin-
ciple requiring stationarity for the discrete action, we derive the discrete constrained multirate Euler-
Lagrange equations. These equations form a nonlinear set of equations which are solved using a
Newton-Raphson method.

Quadrature rules are needed to approximate the action and constraints by discrete quantities. We
use e.g. the midpoint rule, the trapezoidal rule, an affine combination and finite difference. Differ-
ent quadrature rules can be chosen for the kinetic energy, both potential energies and lead to ”fully
implicit”, ”explicit slow, implicit fast” and ”fully explicit” schemes.
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Figure 4: Computing time for fully implicit, explicit slow, implicit fast, and fully explicit schemes with
p ∈ {1, 10, 20, ..., 100} and dt = 0.01 for FPU (left) and dt = 0.0001 for SAM (right).

The computing time for the two mentioned examples is investigated. Figure 4 shows the computing
times for the FPU and the SAM with all three quadrature schemes. In the figure we see that the
computing times for both examples and all quadrature rules are decreasing with an increasing number
of micro steps. Also one can see that for both examples the fully explicit scheme needs the least
computing time. In both examples, the explicit slow, implicit fast and the fully explicit schemes
perform better than the fully implicit scheme in terms of computing time.

As can be seen in Figure 4 there are limits to the savings, because for both systems there is a minimum
computing time at a certain number of micro steps per macro step. The figure shows that for the SAM
the minimum in computing time seems to be reached at a lower number of micro steps. Because the
SAM has a larger number of degrees of freedom than the FPU, there seems to be a relation between the
numbers of degrees of freedom and the minimum in computing time. To investigate this realtionship,
the FPU is used as a first example. Here, the number of degrees of freedom is the numbers of masses
and can be easily varied. The number of masses is increased and the computing time is measured for
different numbers of micro steps per macro step.

Figure 5 shows the computing time for different numbers of masses versus the number of micro steps
for the FPU with three quadrature schemes. The left plot shows the computing times for the fully
implicit scheme, the middle plot the explicit slow implicit fast scheme, and the right plot the fully
explicit scheme. In all three plots it can be seen that the computing time minimum is at a lower number
of micro steps with an increasing number of masses and therefor number of degrees of freedom. In
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the left plot the minimum in computing time is for up to 90 masses at a number of micro steps p > 1.
This means for up to 90 masses the fully implicit scheme has an advantage in computing time when
introducing micro steps. For the middle plot the advantage in computing time when introducing micro
steps is for up to 190 masses. The best performance here has the fully explicit scheme, because for
over 220 masses the right plot shows an advantage in computing time when introducing micro steps.
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Figure 5: Computing time of the FPU with p ∈ {1, 5, . . . , 12, 15, 19, 20, 30, . . . , 100} and dt = 0.01.
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Optimal control of standing high and long jumps

MichaelW.Koch, Sigrid Leyendecker

The optimal control of human jumping and walking movements requires simulation techniques, which
handle the contact’s establishing and releasing between the foot and the ground. The investigated
contact formulation covers the theory of perfectly plastic contacts. A direct transcription method,
called DMOCC in [3], is used to transform the optimal control problem into a constrained optimi-
sation problem. It involves a mechanical integrator based on a discrete constrained version of the
Lagrange-d’Alembert principle. This integrator represents exactly the behavior of the analytical sys-
tem concerning the consistency of momentum maps and symplecticity, therefor it is called a symplectic
momentum scheme. To guarantee the structure preservation and the geometrical correctness during
the establishing or releasing of the contact, the non-smooth problem is solved including the computa-
tion of the contact configuration, time and force, instead of relying on a smooth approximation of the
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contact problem via a penalty potential.

The characteristics of human jumping are analysed using a simplified monopedal jumper, modelled as
a three-dimensional constrained multibody system, to understand how the dynamics changes between
the contact and the flight phase. The model consists of three rigid bodies, which represent the calf,
the thigh and the upper part of the body. The human knee joint is modelled as a revolute joint, where
the unit vector n1 in body 2 represents the axis of rotation and the hip is modelled as a spherical joint.
The constrained multibody system of the jumper is described by the configuration variable q ∈ R

k.
Every rigid body is specified by a configuration vector qα ∈ R

12, composed by the placement of its
center of mass and the right-handed director triad dα

i (t) for i = 1, 2, 3. Accordingly, k equals 12 times
the number of bodies. Due to the used rigid body formulation in use, mint = 18 internal constraints
are present. The anatomical interconnections cause mext = 8 external constraints and therefor the
three-dimensional system is restricted by m = 26 holonomic constraints. The k −m = 10 generalised
coordinates read u =

[
u1 θ1 θS θR

]
∈ R

10. In contrast to the oversimplified monopedal jumper
in [2], the herein discussed jumper is actuated in the hip and the knee joint. The contact between the
foot and the ground is modelled as perfectly plastic contact, which means, that during the contact
phases the foot is fixed by the contact function gS = 0 ∈ R

3 (spherical joint) at the ground. As a
result of the constraints, the degrees of freedom are reduced to k − m − 3 = 7. The contact force
immobilizes the jumper’s foot and its function is to prevent the penetration of the ground. In this
case, the third component of the contact Lagrange multiplier is negative (λ3

Sn
< 0) and more details

are given in [2].

Figure 1: Time grid and dynamical constraints of the jumper’s optimal control problem

The goal of the optimal control problem is to find the optimal trajectory and the optimal control
sequence leading the monopedal jumper from an initial to a final state. A general illustration of the
two optimal control problems of the standing high and long jumps is given in Figure 1.

a) b)

Figure 2: Model of the three-dimensional jumper neglecting the foot and its generalised coordinates
in a) and in b) the more humanlike jumper model including the foot.

As shown, the motion consists of two contact phases, i.e. the jump-off phase at the beginning and the
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landing phase at the end of the motion. The nodes Nκ and Nι represent the junction between the
contact and the flight phase, so they are called switching points. The essential differences between
the two jumping movements concerns the flight phase, whereby in the case of the long jump, the
maximum length is required at the end of the flight phase. Considering the high jump movement, the
maximum height is requested during the flight phase. The objective for the optimisation problems
is to minimize the control effort, but the prospective goal is to investigate physiologically motivated
cost functions, e.g. minimizing the joint forces during the landing phases and additional interesting
objective functions are given in [1].

As illustrated in Figure 2 a), the foot is neglected in the first model, but the inclusion of the jumper’s
foot is a basic detail and it has enormous influence of the jumping movement before the contact
between the foot and the ground is established or released. In a second model, the ankle is modelled
as a spherical joint and the extended multibody system of the monopedal jumper is described by the
configuration variable q ∈ R

48. As a result of the mint = 24 internal constraints and the mext = 11
anatomical interconnections, the degrees of freedom are extended to k −m = 13 and the generalised
coordinates read u =

[
u1 θ1 θSH

θR θSA

]
∈ R

13.

Figure 3: The time grid and the dynamical constraints of the extended optimal control problem.

As illustrated in Figure 3, the transition between the contact and the flight phases are enlarged to
several switching points, in which sequentially the forefoot and the heel contact is established or
released. According to these more humanlike adoptions, we expect that the results of the optimisation
problem using the four-link monopedal jumper fit even better with the real human jumping movements.
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Lie group variational integrators with quaternion parametrization of rotations

Thomas Leitz, Sigrid Leyendecker

The Lie group variational integrator presented here has the advantage that it uses a nonsingular
representation of rotational degrees of freedom and at the same time doesn’t require any constraints.
This is accomplished by using a structure preserving variation of the action specific to rotations, rather
than taking the directional derivative in any direction.

Instead of using elements of SO (3) as in [2], here rotations are represented by unit quaternions
p ∈ H

1 = {p ∈ H| ‖p‖ = 1}. The material angular velocity is defined as ω = 2p̄ ◦ ṗ ∈ R
3. We consider

the Lagrangian L : H1 × R
3 → R as a function of orientation and angular velocity.

Variations of elements of H1 are performed by applying the directional derivative using a one parameter
subgroup element exp (εη) ∈ H

1
ε ⊂ H

1 where ε ∈ R, η ∈ R
3 and exp (·) is the quaternion exponential.

The variations of the rotational position and the angular velocity then read

δp =
d

dε

∣
∣
∣
∣
ε=0

p ◦ exp (εη) = p ◦ η δω = 2 (ω × η + η̇)

We define a discrete Lagrangian (see [3]) as Lj
d : H

1×H
1 → R which approximates the action functional

for one time step ∆tj = tj+1 − tj where pj ≈ p
(
tj
)
and f j = p̄j ◦ pj+1 is the rotational increment.

The discrete action sum then reads

Sd =

N−1∑

j=1

Lj
d

(
pj , f j

)
≈

T∫

0

L (p, ω) dt

Applying the discrete Hamilton’s principle the discrete Euler-Lagrange equations are

a
(
f j
)
= ℑ

(

p̄j ◦
∂Lj

d

∂pj
−

∂Lj
d

∂f j
◦ f̄ j + f̄ j−1 ◦

∂Lj−1
d

∂f j−1

)

= 0

Where a : H1 → R
3. Using the quaternion Cayley map Cay : R3 → H

1 to express f j = Cay
(
gj
)
,

the function a can locally be transformed into a function b : R3 → R
3, i.e. b (g) = 0 , see [1]. These

equations can be solved for gj using a Newton-Raphson scheme and f j is recovered using the Cayley
map. The discrete Euler-Lagrange equations are derived for the physical pendulum with the discrete
Lagrangian

Ld =

(
1

2

(
ωj
)T

Jωj −mgℓ
〈
pj ◦ e3 ◦ p̄

j,e3
〉
)

∆t

where m is the mass, g is the gravity constant, ℓ is the length of pendulum, J is the 4 × 4 inertia
matrix and e3 = [0, 0, 1]T . Using the discretization of the angular velocity as

ωj := 2

(
pj+1 + pj

2

)

◦
pj+1 − pj

∆t
=

1

∆t

(
f j − f̄ j

)
∈ R

3

results in the following discrete Euler-Lagrange equations

ℑ
[(
Jf j

)
◦ f̄ j −

(
Jf̄ j

)
◦ f̄ j

]
= ℑ

[
f̄ j−1 ◦

(
Jf j−1

)
− f̄ j−1 ◦

(
Jf̄ j−1

)
+∆t2mgℓ

(
p̄j ◦ e3 ◦ p

j ◦ e3
)]

Results of this integrator are compared to a variational integrator formulated on SO (3) for the
parametrization of the rotational degrees of freedom and a similar approximation of the angular
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velocity as in [2]. Figure 1 shows the evolution of the angle ϕ of the pendulum for a simple planar
motion for the two integrators. One can observe, that the solution of the integrator formulated in
terms of quaternions predicts a time of oszillation closer to the exact time Texact. Figure 2 shows the
energy behaviour typical for this type of integrator, i.e. there is no artificial change in total energy.
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Figure 1: Evolution of the angle ϕ.
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Figure 2: Energy behaviour of the integrator us-
ing quaternions.
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On optimal control simulations of throwing

Ramona Maas, Sigrid Leyendecker

Human motion is investigated by means of numerical simulations from different viewpoints and with
growing interest. Often, experimentally based inverse dynamics methods, supported by motion cap-
turing measurements, as well as forward dynamics and optimal control simulations, e.g. extensively
discussed in the context of human walking simulations in [4], are used within biomechanical investi-
gations.

Within optimal control simulations, the goal is to find optimal trajectories and force fields that yield
a motion, which is optimal in the sense of the defined objective function and which furthermore fulfils
the equations of motion and possibly other constraints on the motion.

As an example, the problem of throwing with the goal of a maximal throwing distance is investigated
during this work. In this context, we use a method called discrete mechanics and optimal control
(DMOCC, see [2]), which benefits from the use of a variational integrator, guaranteeing that the solu-
tion of the optimal control problem inherits special characteristics of the real motion, like for example
angular momentum consistency. Moreover, the solution does not suffer from any numerical drifts in
the energy. In this work, the method is augmented by the implementation of muscle actuation. In the
present human arm model, the elbow motion is generated by seven Hill-type muscle models, while the
shoulder and the wrist are actuated by joint torques.

For the motion of a multibody system connected via joints and discretised with a constant time

Chair of Applied Dynamics, Annual Report 2013 21



3 Research

step ∆t ∈ R, starting from a predefined initial configuration q(t0) = q0 and conjugate momentum
p(t0) = p0 to a given end configuration q(tN ) = qN and conjugate momentum p(tN ) = pN , a typical
optimal control problem is given in (1). Herein, an appropriate discrete objective Jd, with a discrete
cost function Cd, is minimised and the discrete generalised coordinates ud = {un}

N
n=0, the generalised

joint torques τ J
d = {τ J

n}
N−1
n=0 and the sequence of muscle activations Ad = {An}

N−1
n=0 are the optimisa-

tion variables. At the same time, the symplectic-momentum consistent discrete equations of motion
and boundary conditions (for example to start with zero momentum p0 = 0) must be fulfilled. There
may be further constraints like bounds on the optimisation variables and path constraints (equality
or inequality), e.g. to set limits on the joint angles according to anatomical restrictions.

min
ud,τ J

d
,Ad

Jd(ud, τ
J
d ,Ad) = min

ud,τ J
d
,Ad

N−1∑

n=0

Cd(un,un+1, τ
J
n,An)

subject to: · fulfilment of the symplectic-momentum consistent discrete equations of motion

· initial and final conditions

· path constraints

(1)

Within this numerical example, throwing with the goal of maximal throwing distance is examined
using a human arm model. Hence, a goal has to be formulated that leads to a maximal throwing
distance. When neglecting the air resistance and starting the throw from a height h = 0, the throw

distance R can be calculated with R =
v2

g
sin(2β) Herein, v is the throw velocity, g is the gravitational

constant and β is the throw angle. This means, an appropriate objective for the optimisation problem
is given by maximising v in direction of β = 45◦, represented by throw direction rd ∈ R

3.

Jd(ud, τ
J
d ,Ad,∆t) = −rTd ·

qhand
N − qhandN−1

∆t
(2)
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Figure 1: An optimal throwing motion: Evolution of kinetic, potential and total energy over time.

As this criterion does not affect the overall effort of the motion, it can yield physiologically not
reasonable joint torque and muscle activity evolutions. Therefore, it is suggested to use this criterion
together with a bound on the maximal effort of the motion.

The arm is fixed in space in the shoulder joint and the simulation starts from a predefined initial
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arm position, as illustrated in the first plot of Figure 2, with an initial momentum p0 = 0. The end
configuration is not strictly predefined but implemented via inequality constraints. They require an
orientation of palm forward and a distance to the origin in the shoulder of minimal 0.2m in positive e2-
and e3-direction at the end of the simulation time. Further inequality constraints are set on the joint
angles in elbow and wrist via constraining the scalar products of the directors or via an approximation
on the joint angle by summing up the generalised configuration variables. The simulation time is free,
as the size of the time step ∆t is included in the set of optimisation variables. The bounds on the
time step size are set to [0.0175, 0.0225]s and the problem is discretised with N = 15 time steps. In
this simulation, the focus is on long throw, which is typically performed during sports education with
a small, lightweight ball. To represent the mass of a ball, a point mass of 0.2kg is added to the hand’s
center of mass.

The resulting energy evolution over time, see Figure 1, shows a strong increase in kinetic and total
energy with its maximum at the end of the motion, indicating that the final velocity is maximised,
while the resulting optimal time step size is at its lower bound ∆t = 0.0175s.

Figure 2: Snapshots of an optimal throwing motion.

It is generally known that during a throwing motion, momentum is gained by taking the arm far
back in the beginning of the motion. Then, the arm is usually pulled fast forward like a pitch with
the elbow ahead. The biomechanical principle behind optimal throwing motions is called ’principle
of optimal acceleration distance’, see [1]. It states that the longer a constant force acts on a body,
the higher is the final velocity of this body. For throwing motions, this means there is an optimal
backswing motion according to length and direction. However, the optimal trajectory of the throw
is not necessarily the longest path. Excessive backswing motions can also be counterproductive, as
muscles can be stretched over their optimal length, see for example [3]. Comparing this to the resulting
motion of the optimal control simulation, see snapshots in Figure 2, a large coincidence can be found,
in particular concerning the gaining of momentum by a posterior shoulder motion at the beginning of
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the motion and the elbow being ahead during the final steps of the motion. However, there certainly
exist differences to real throwing motions, as this optimal control simulation treats a standing throw,
while typical throw motions are done with a run up and an additional twist of the upper body.
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Sportverlag Berlin, 1981.
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Identifying various types of Pareto sets in multiobjective optimal control of multibody
dynamics

Maik Ringkamp, Sina Ober-Blöbaum, Sigrid Leyendecker

Optimal control of multibody dynamics is present in a variety of practical applications e.g. robotics or
biomechanics. The aim is to control the motion of rigid bodies such that some predefined objectives
are optimized. For example, an industrial robot should move in minimal time, with minimal energy
consumption, minimal mechanical wear and maximum payload and ideally, all objectives are optimized
simultaneously. In the case of conflicting objectives, this is impossible because the optimal solution of
one objective does not coincide with an optimal solution of another objective. In general, a decision
maker has to select a trade-off solution that fits the specific demands best. Such problems are called
multiobjective optimal control problems and the set of optimal trade-off solutions is the Pareto set.
Figure 1 depicts the difference between the optimization of a single objective and the optimization of
two objectives.

(a) x

Jd1(x)

(b) Jd1

Jd(x)

(c) x

Jd1(x)Jd2(x)

(d) Jd1

Jd2

Figure 1: (a) The graph of a single objective Jd1 and its optimal point in blue. (b) The image space
of a single objective Jd1, its optimal value in blue, and its feasible set in gray. (c) The graph
of two objectives Jd1 and Jd2 and their Pareto set in blue. (d) The image space of two
objectives Jd1 and Jd2, their Pareto front in blue, and their feasible set in gray.
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1. Discretization of the multiobjective optimal control problem

The considered problem is a kinematic chain of four rigid bodies, interconnected by two revolute
joints and one spherical joint (see Figure 2 and 3 (b)). The initial and final conditions (translation
and rotation) are fully specified such that the kinematic chain moves from a straight to a closed
position, performing a rest to rest maneuver in the presence of gravity. We minimize two objectives,
the control effort for the entire maneuver and the required maneuver time, given here in discretized
form:

Jd1(ud, τ d, tN ) =
tN − t0

N

N−1∑

i=0

‖τ i‖
2 (1)

Jd2(ud, τ d, tN ) = tN (2)

The multiobjective optimal control problem is transformed to a discretized formulation via a direct
discretization approach called DMOCC [2]. DMOCC is a combination of Discrete Mechanics and
Optimal Control (DMOC) [3] and discrete versions of the reparametrization to generalized parameters
and a null space method [4]. Instead of discretizing the Euler-Lagrange equations of motion directly,
we use a discrete variational principle. In the following, we sketch the main idea and refer to [2] for
details.

The time interval [t0, tN ] is replaced by a set of N + 1 equidistant time nodes t0 ≤ t1 ≤ . . . ≤ tN
with ti = t0 + ih, i ∈ [N ] := {0, 1, . . . , N} and a step size h = tN−t0

N . The configuration functions
q : [t0, tN ] → Q,u : [t0, tN ] → U are replaced by a value at each time node, leading to discrete functions
qd : {ti|i ∈ [N ]} → Q and ud : {ti|i ∈ [N ]} → U , with qi := qd(ti) ≈ q(ti) and ui := ud(ti) ≈
u(ti). Similarly, the discrete control function τ d approximates the continuous control function on
each interval [ti, ti+1]. Finite differences and numerical integration are used to replace TQ by Q×Q
and to discretize the Lagrange-d’Alembert principle based on a discrete Lagrangian Ld : Q×Q → R.
Taking discrete variations δqi, i ∈ [N ] leads to discrete Euler-Lagrange equations that approximate
the equations of motion.

Similar as in [2], a discrete reparametrization F d : U × Q → C with qi = F d(ui, qi−1), a null space
matrix P T

d (qi) and an input transformation matrix BT
d (qi) are used to reduce the dimension. The

reduced scheme reads

P T
d (qi)

[

D2Ld(qi−1, qi) +D1Ld(qi,F d(ui+1, qi)) +
h

2
BT

d (qi) (τ i−1 + τ i)

]

= 0 (3)

for i = 1, . . . , N − 1. In the same way, we obtain discretized versions of the initial and final conditions
(4), (5), and lower and upper bounds (6) with t0 < tN .

rd0(u0,u1, τ 0) = 0 (4)

rdN (uN−1,uN , τN−1) = 0 (5)

ud ≤ ud ≤ ud, τ d ≤ τ d ≤ τ d, and tN ≤ tN ≤ tN (6)

2. Computation of the Pareto set

The feasible set S is defined by equations (3)-(6) of the underlying discretized multiobjective optimal
control problem. One way to approximate it is to use slack variables to transform the inequality
constraints into additional equality constraints. The resulting problem is a root finding problem and
can be solved e.g. by using global subdivision techniques [5], or locally by continuation methods as
similarly done in [6].

As we are interested in a rather rough approximation, we use a simpler approach here. First, we
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randomly select a finite number of possibly infeasible trajectories x that satisfy the lower and upper
bounds (6). These are initial guesses for the minimization problem minx∈S 1 leading to a finite set of
trajectories Sd ⊆ S. Moreover, evaluating J on each feasible point leads to a finite approximation of
the image of the feasible set J(S) such that we have Sd ≈ S and J(Sd) ≈ J(S). Further, applying
a test of dominance on these sets leads to an approximation of the Pareto set and front Pd ≈ P and
J(Pd) ≈ J(P). Depending on the number of the initially selected trajectories, this approximation
can be quite rough. However, J(Pd) already indicates the shape of the Pareto front which is used to
determine an appropriate scaling of the objective function and provides initial guesses for the later
used reference point method (for details see [7]).

3. Numerical Results

The method is implemented in Matlab and uses ADiMat [8] algorithmic differentiation for the com-
putation of the sparse Jacobian of the nonlinear constraint function defined by (3)-(5).

Figure 2: Selected movements for three types of Pareto optimal trajectories of the four body kinematic
chain at the time nodes: 1, 5, 8, 11 and 15. Trajectories with Jd = (0.1681, 0.0286) in blue
in the first row, with Jd = (0.1834, 0.0283) in red in the second row, and with Jd =
(0.1500, 0.0296) in black in the third row.
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Figure 3: (a) Objective space, Pareto front (blue, red, and black stars) for different types of trajecto-
ries. Movements of selected Pareto points for each type (blue, red, and black squares) are
given in Figure 2. (b) Three types of Pareto optimal trajectories of the four body kinematic
chain for each type.
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In order to compute a rough approximation of the feasible set, we use SQP to solve minx∈S 1 with
random initial guesses, each of them already fulfilling the lower and upper bounds. Using various
stricter bounds can help to yield a better approximation, at least for the considered example. The
rough approximation is used to scale the objectives and three distinct points are selected as initial
guesses for a reference point method. This finally leads to an approximation of the Pareto set depicted
in Figure 3 (a) in blue, red and black. Each Pareto point is colored according to the corresponding
starting point of the continuation. Three types of different trajectories can be detected in the space of
the redundant coordinates (Figure 3 (b) in blue, red, and black). The movement is depicted exemplary
in Figure 2 for selected trajectories with Jd = (0.1681, 0.0286) in blue, Jd = (0.1834, 0.0283) in red,
and Jd = (0.1500, 0.0296) in black and the corresponding Pareto points are highlighted in Figure 3
(a). Probably these types represent local smooth connected parts of the Pareto set.
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Finite element modelling of dielectric elastomers

Tristan Schlögl, Sigrid Leyendecker

Modern robotic systems suffer some severe dynamic limitations. The rigid coupling between electrical
drives and joints does not allow for dynamic motions like they occur in nature, where muscles act
as an energy buffer and store energy. However, this elastic behaviour plays an important role when
considering humanoid systems in terms of safety, energy efficiency and robustness.

Dielectric elastomer actuators are composed of a series of elastic capacitors, each one equipped with
two conductive layers separated by an insulating material with small Young’s modulus and large
permittivity [1]. In this collaborative work [2] a dielectric silicone is used as the main component and
conductive layers are introduced by adding carbon nanotubes. The structure of a single actuator cell
is illusrated in Figure 1 on the left hand side. As with capacitors, when an external voltage is applied
to the conductive layers, an electric field is established. To be observed in Figure 1 on the right hand
side, electrostrictive effects then lead to a contraction of the silicone, as dipoles and other polarisation
types caused by the electric excitation are formed.

silicone + carbon nanotubes (conductive)

silicon (insulating)

silicone + carbon nanotubes (conductive)

+ + + + + + + +
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Figure 1: Three layer structure of a dielectric elastomer actuator (left) and electrostriction (right).

These effects can the described by the Maxwell equations, the balance of momentum and constitutive
material laws. Assuming that the electric field can be regarded as quasi-static, no external magnetic
fields are applied and no free currents and electric charges are present, electrostatics are covered by [3]

∇X ×E = 0 , (1)

with the electric field vector E in the reference configuration X ∈ B0 and

∇X ·D = 0, (2)

whereD is the electric displacement vector in the reference configuration. From equation (1) it directly
follows that E is conservative and can be expressed as the gradient of a scalar electric potential ϕ by

E = −∇Xϕ. (3)

Note that additional boundary terms are needed in order to solve the equations. Vectors in the
reference configuration are obtained by the pull-back operations E = FT · e and D = JF−1 · d for
the electric field e and the electric displacement d in the spatial configuration, using the deformation
gradient F and its determinant J = det(F ).
The balance of momentum is given by [4]

∇X ·PT + f e = ρ0ẍ , (4)

where P is the Piola-Kirchhoff stress tensor, f e is the force resulting from electrostatics, ρ0 is the mass
density in the reference configuration and ẍ is the absolute acceleration of a spatial point. Together
with the definition [3]

D = ε0JC
−1 · E +P el, (5)
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where C is the right Cauchy-Green tensor, P el is the material polarisation vector and ε0 is the vacuum
permittivity, and the electric body force given by [5]

f e = ∇X

(
F−T · E

)
·P el, (6)

equation (4) can be rewritten as
∇X ·TT = ρ0ẍ , (7)

with the total stress T being superposed of P and some electric counterpart. Note that for an actual
simulation, equation (7) needs to be completed by initial and boundary conditions.
By integrating the energy function

Ω(F ,E ) =
µ

2
[C : 1 − 3]− µ ln(J) +

λ

2
[ln(J)]2

︸ ︷︷ ︸

Neo-Hooke

+ c1E · E
︸ ︷︷ ︸

electric

+ c2C : [E ⊗E ]−
1

2
ε0JC

−1 : [E ⊗E ]
︸ ︷︷ ︸

coupling

(8)

with Lamé parameters µ and λ, electric parameters c1 and c2 and the identity 1 over the material
body B0, an expression for the potential energy V is obtained. Together with the kinetic energy

T =

∫

B0

1

2
ρ0‖ẋ‖

2dV, (9)

the Lagrange function
L = T − V (10)

can be evaluated. By following Hamilton’s principle

δS = 0 (11)

and requiring that the first variation of the action integral

S =

∫ t1

t0

Ldt (12)

vanishes, after some calculation equation (7) is recovered, meaning that equation (11) based on T and
V is equivalent to equation (7).

Approximating the action integral using quadrature rules, discretising with finite elements in space
and finite differences in time and applying Hamilton’s principle (11) for the discrete set of equations,
structure preserving integration schemes, generally non-linear and implicit, of the form

M
1

∆t2
·
(
xn+1 − 2xn + xn−1

)
+R

(
xn+1, xn, xn−1

)
= 0 (13)

with the time index n, state variables x and non-linear terms R are obtained [6]. Note that, due
to the fact that electrodynamic effects are not considered here, the entries of the mass matrix M
associated with electric degrees of freedom are zero. Using a Newton-Raphson scheme and providing
initial values, boundary conditions as well as certain quadrature rules when developing the discrete
Lagrangian, this non-linear problem can be solved for unknown displacements and electric potentials
at each finite element node. Figure 2 illustrates the results of an in-house MATLAB FEM solver,
evaluating the quasi-static state of a given muscle shape for applied voltage.

This model forms the basis for future work regarding optimal control problems, where DEAs are used
as actuators in robotics.
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Figure 2: Contraction of a dielectric elastomer actuator in muscle shape due to an applied voltage.
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4.1 Teaching

Wintersemester 2013/2014

Biomechanik der Bewegung (MT)

Vorlesung + Übung H. Lang

Dynamik starrer Körper (MB, ME, WING, IP, BPT, CE)
Vorlesung S. Leyendecker

Übung + Tutorium O.T. Kosmas, T. Leitz
M. Ringkamp, T. Schlögl

Mehrkörperdynamik (MB, ME, WING, TM, BPT, CE)
Vorlesung S. Leyendecker

Übung H. Lang

Numerische Methoden in der Mechanik (MB, ME, WING, TM, BPT)

Vorlesung + Übung H. Lang

Theoretische Dynamik I (MB, ME, WING, TM, CE, BPT)

Vorlesung + Übung H. Lang

Sommersemester 2013

Statik und Festigkeitslehre
(CBI, CE, ET, LSE, ME, MWT, IP, MT, CEN, BPT)

Vorlesung S. Leyendecker

Übung + Tutorium T. Gail, T. Leitz, O.T. Kosmas
R. Maas, M. Ringkamp

geprüft 377

Biomechanik (MT)

Vorlesung + Übung H. Lang
geprüft 90 + 12 (WS 12/13)

Geometrische Mechanik und geometrische Integratoren
(MB, ME, WING)

Vorlesung S. Leyendecker

Übung H. Lang
geprüft 5

Theoretische Dynamik II
(M, TM, MB, ME, CE, BPT, WING, Ph)

Vorlesung + Übung H. Lang
geprüft 8

Dynamik nichtlinearer Balken (MB, M, Ph, CE, ME, WING)
Vorlesung H. Lang
geprüft 4
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Rechnerunterstützte Produktentwicklung (RPE)
Versuch 6: Mehrkörpersimulation in Simulink

(MB, ME, WING) Praktikum M. Koch, O.T. Kosmas
T. Leitz, R. Maas, M. Ringkamp

Teilnehmer 70

Wintersemester 2012/2013

Dynamik starrer Körper (MB, ME, WING, IP, BPT, CE)
Vorlesung S. Leyendecker

Übung + Tutorium T. Gail, O.T. Kosmas
T. Leitz, M. Ringkamp

geprüft 564 + 155 (SS 2013)

Mehrkörperdynamik (MB, ME, WING, TM, BPT, CE)
Vorlesung S. Leyendecker

Übung H. Lang
geprüft 35 + 3 (SS 2013)

Theoretische Dynamik I (MB, ME, WING, TM, CE, BPT)

Vorlesung + Übung H. Lang
geprüft 12 + 2 (SS 2013)

Numerische Methoden in der Mechanik (MB, ME, WING, TM, CE, BPT)

Vorlesung + Übung H. Lang
geprüft 14 + 3 (SS 2013)

Dynamik nichtlinearer Balken (MB, M, Ph, CE, ME, WING)
Vorlesung H. Lang
geprüft 6

4.2 Seminar for Mechanics

together with the Chair of Applied Mechanics LTM

21.01.2013 Steffen Göbel
Federal Mogul Nuremberg, Germany
Topologieoptimierung des Radträgers eines Formula Student Rennwagens

23.01.2013 Odysseas Kosmas
Chair of Applied Dynamics, FAU Erlangen-Nuremberg, Germany
Phase fitted variational integrators using interpolation techniques for the general N-body
problem

23.01.2013 Saskia Sitzmann
ZISC Erlangen, Germany
Mortar contact in the FEM package CalculiX
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26.04.2013 Olivier A. Bauchau
Universitiy of Michigan – Shanghai Jiao Tong University Joint Institute, China
Three-dimensional beam theory for flexible multibody dynamics

27.05.2013 Stefan Sandfeld
Institute of Materials Simulation (WW8), Department of Materials Science, FAU
Erlangen-Nuremberg, Germany
From systems of discrete dislocations to a continuous field representations: the contin-
uum dislocation dynamics theory

21.06.2013 Dominik Budday
Karlsruhe Institute of Technology, Germany
Analyse des räumlichen Gehens anhand eines Masse-Feder Modells

08.07.2013 Thomas Graupeter
Lehrstuhl für Systemsimulation, Department Informatik, FAU Erlangen-Nuremberg,
Germany
Birefringence in solid-state laser rods due to the thermal lensing effect regarding shear
strains in axial-radial plane

19.07.2013 Bernhard Eidel
Institut für Mechanik, Universität Duisburg-Essen, Germany
On atomistic-continuum coupling for crystalline nano-structures: from surface relaxa-
tions to localized inelastic mechanisms

26.09.2013 Thorsten Brand
Erlangen Centre for Astropartile Physics, FAU Erlangen-Nuremberg, Germany
An automated data reduction pipeline for the Hartebeesthoek Radio Astronomy Obser-
vatory

09.10.2013 Winnifried Wollner
Fakultät für Mathematik, Informatik und Naturwissenschaften, Universität Hamburg,
Germany
DOpElib – a differential equations and optimization toolkit

02.12.2013 Markus Härtel
TU Chemnitz, Germany
Auf der Suche nach der äquivalenten Querschnittsfläche – Simulation eines Kreuz-
zugversuches

11.12.2013 George Chatzigeorgiou
Arts et Métiers ParisTech, Metz, France
Theoretical and computational aspects on surface electrostatics
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4.3 Dynamics laboratory

Tristan Schlögl, Nathanael Bach

Figure 1: Student S. Scheiterer working on the swing up of an inverted pendulum.

The LTD started to setup a dynamics laboratory. It is equipped with basic devices like an oscilloscope,
a multimeter, a soldering station, a workstation with tools, lab power supplies, a dSpace real time
machine, different Arduino boards and various accessories. The first challenge is to offer a new
dynamics lab tutorial for students covering topics like modelling, simulation, measurement of dynamics
and optimal control problems. Some of the experiments are already in preparation like a two degrees
of freedom robot used to swing up and control an inverted pendulum (see Figure 1).

The design of another six degrees of freedom robot is based on that of a common industrial jointed-
arm robot complemented with a gripper (see Figure 2). This robot is actuated with Dynamixel servos
which offer a good compromise between standard model servos and industrial scaled drives. The robot
arm will be used to investigate the practical application of optimal control theory, where trajectories
optimise certain criteria like energy efficiency or speed. Manufacturing of the accessories starts in the
beginning of 2014.

Figure 2: Planned six degrees of freedom jointed-arm robot
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4.4 Summer schools

Differential-geometric methods in computational multibody system dynamics
(16 - 20 September 2013)

Maik Ringkamp and Tobias Gail participated in this CISM course in Udine, Italy. The course was
organised by Zdravko Terze and Andreas Müller and held at the lecture room at CISM. Zdravko
Terze, Andreas Müller, Olivier Brüls, Carlo Bottasso and Xilun DIng gave lectures on time integration
on Lie groups and its application to multibody system dynamics. Furthermore, Todd Murphey talked
about variational integrators in optimal control. The CISM was providing us with Italian lunch every
day where we could get in contact with the other participants.

Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics
(07 - 11 October 2013)

This CISM course in Udine, Italy was attended by Odyseas Kosmas, Thomas Leitz and Tobias Gail.
The program was organised by Peter Betsch and lectures were given by Peter Betsch, Adrian Lew,
Martin Arnold, Alberto Cardona, Johannes Gerstmayer and Ignacio Romero on the topic of higher
order and structure preserving integrators. Again the CISM provided great hospitality.

Optimal control, stochastic and mixed Integer programming in energy management
(14 - 17 October 2013)

Maik Ringkamp participated in the ISAM – TopMath Autumn School at the TU Munich, Germany.
The program was organised by Peter Gritzmann, Anusch Taraz and Michael Ulbrich with lectures
by Günter Leugering, Alexander Martin and Rüdiger Schultz. Günter Leugering gave lectures on
optimal control of energy networks, Alexander Martin talked about piecewise linear functions in energy
optimization and Rüdiger Schultz about optimal control, stochastic and mixed integer programming
in energy management.
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5.1 Book chapters

1. S. Leyendecker, D. Pekarek, and J.E. Marsden. Structure preserving optimal control of three-
dimensional compass gait. Modeling, Simulation and Optimization of Bipedal Walking, K. Mom-
baur, K. Berns (eds.), Vol. 18, pp. 99-116, Springer, 2013.

2. S. Leyendecker, and S. Ober-Blöbaum. A variational approach to multirate integration for
constrained systems. Multibody Dynamics, Computational Methods in Applied Sciences,
J.C. Samin, P. Fisette (eds.), Vol. 28, pp. 97-121, Springer, 2013.

5.2 Reviewed journal publications

1. M.W. Koch, and S. Leyendecker. Structure preserving simulation of monopedal jumping. Archive
of Mechanical Engineering, DOI 10.2478/meceng-2013-0008, Vol. LX, pp. 127-146, 2013.

2. R. Maas, and S. Leyendecker. Biomechanical optimal control of human arm motion. Journal of
Multi-body Dynamics, DOI 10.1177/1464419313488363, 2013.

3. J. Linn, H. Lang, and A. Tuganov. Geometrically exact Cosserat rods with Kelvin-Voigt type
viscous damping. Mechanical Sciences, Vol. 4, pp. 79-96, 2013.

5.3 Reviewed proceeding publications

1. S. Reitelshöfer, M. Landgraf, J. Franke, and S. Leyendecker. Qualification of dielectric elastomer
actuators as artificial muscles for highly dynamical N-DOF robot kinematics. In Proceedings
of the 6th International Symposium on Adaptive Motion of Animals and Machines, 2 pages,
Darmstadt, Germany, 25-26 June 2013.

2. F. Demoures, F. Gay-Balmaz, T. Leitz, S. Leyendecker, S. Ober-Blöbaum, and T.S. Ratiu. Asyn-
chronous variational Lie group integration for geometrically exact beam dynamics. In Proceed-
ings of the ECCOMAS Thematic Conference on Multibody Dynamics, DVD, Zagreb, Croatia,
1-4 July 2013.

3. T. Gail, S. Leyendecker, and S. Ober-Blöbaum. Computing time investigations of variational
multi rate integrators. In Proceedings of the ECCOMAS Thematic Conference on Multibody
Dynamics, DVD, Zagreb, Croatia, 1-4 July 2013.

4. M.W. Koch, and S. Leyendecker. Optimal control of monopedal jumping movements. In Proceed-
ings of the ECCOMAS Thematic Conference on Multibody Dynamics, DVD, Zagreb, Croatia,
1-4 July 2013.

5. H. Lang, S. Leyendecker, and J. Linn Numerical experiments for viscoelastic Cosserat rods with
Kelvin-Voigt damping. In Proceedings of the ECCOMAS Thematic Conference on Multibody
Dynamics, DVD, Zagreb, Croatia, 1-4 July 2013.

6. R. Maas, and S. Leyendecker. Muscle paths in biomechanical multibody simulations. In Proceed-
ings of the ECCOMAS Thematic Conference on Multibody Dynamics, DVD, Zagreb, Croatia,
1-4 July 2013.

7. M. Ringkamp, S. Ober-Blöbaum, and S. Leyendecker. A numerical approach to multiobjective
optimal control of multibody dynamics. In Proceedings of the ECCOMAS Thematic Conference
on Multibody Dynamics, DVD, Zagreb, Croatia, 1-4 July 2013.
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5.4 Talks

1. F. Demoures, F. Gay-Balmaz, T. Leitz, S. Leyendecker, S. Ober-Blöbaum, and T.S. Ratiu.
Asynchronous variational Lie group integration for geometrically exact beam dynamics. GAMM
Annual Meeting, Novi Sad, Serbia, 18-22 March 2013.

2. T. Gail, S. Leyendecker, and S. Ober-Blöbaum. Computing time investigations for variational
multirate schemes. GAMM Annual Meeting, Novi Sad, Serbia, 18-22 March 2013.

3. M.W. Koch, and S. Leyendecker. Optimal control of monopedal jumping movements. GAMM
Annual Meeting, Novi Sad, Serbia, 18-22 March 2013.

4. O.T. Kosmas, and S. Leyendecker. On frequency estimations in phase fitted variational integra-
tors. GAMM Annual Meeting, Novi Sad, Serbia, 18-22 March 2013.

5. R. Maas, and S. Leyendecker. Dynamics of muscle paths in biomechanical simulations. GAMM
Annual Meeting, Novi Sad, Serbia, 18-22 March 2013.

6. M. Ringkamp, S. Leyendecker, and S. Ober-Blöbaum. Multiobjective optimal control of a four
body kinematic chain. GAMM Annual Meeting, Novi Sad, Serbia, 18-22 March 2013.

7. S. Reitelshöfer, M. Landgraf, T. Schögl, J. Franke, and S. Leyendecker. Qualifying dielec-
tric elastomer actuators for usage in complex and compliant robot kinematics. Poster, Interna-
tional conference on Electromechanically Active Polymer (EAP) transducers & artificial muscles,
Dübendorf, Switzerland, 25-26 June 2013.

8. F. Demoures, F. Gay-Balmaz, T. Leitz, S. Leyendecker, S. Ober-Blöbaum, and T.S. Ratiu. Asyn-
chronous variational Lie group integration for geometrically exact beam dynamics. ECCOMAS
Thematic Conference on Multibody Dynamics, Zagreb, Croatia, 1-4 July 2013.

9. T. Gail, S. Leyendecker, and S. Ober-Blöbaum. Computing time investigations of variational
multi rate integrators. ECCOMAS Thematic Conference on Multibody Dynamics, Zagreb, Croa-
tia, 1-4 July 2013.

10. M.W. Koch, and S. Leyendecker. Optimal control of monopedal jumping movements. ECCO-
MAS Thematic Conference on Multibody Dynamics, Zagreb, Croatia, 1-4 July 2013.

11. H. Lang, S. Leyendecker, and J. Linn. Numerical experiments for viscoelastic Cosserat rods
with Kelvin-Voigt damping. ECCOMAS Thematic Conference on Multibody Dynamics, Zagreb,
Croatia, 1-4 July 2013.

12. R. Maas, and S. Leyendecker. Muscle paths in biomechanical multibody simulations. ECCOMAS
Thematic Conference on Multibody Dynamics, Zagreb, Croatia, 1-4 July 2013.

13. M. Ringkamp, S. Ober-Blöbaum, and S. Leyendecker. A numerical approach to multiobjec-
tive optimal control of multibody dynamics. ECCOMAS Thematic Conference on Multibody
Dynamics, Zagreb, Croatia, 1-4 July 2013.

14. I.S. Kardaras, and O.T. Kosmas. Using simulated annealing algorithms to solve the Schroedinger
equation in muonic atoms. International Conference on Mathematical Modeling in Physical
Sciences, Prague, Czech Republic, 1-5 September, 2013.

15. O.T. Kosmas, and D.S. Vlachos. Energy fitted discrete Lagrangian integrators. Interna-
tional Conference on Mathematical Modeling in Physical Sciences, Prague, Czech Republic,
1-5 September, 2013.
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16. O.T. Kosmas, and D. Papadopoulos. Multi-symplectic structure of numerical methods derived
using nonstandard finite difference schemes. International Conference on Mathematical Model-
ing in Physical Sciences, Prague, Czech Republic, 1-5 September, 2013.

17. S. Leyendecker, S. Ober-Blöbaum, and T. Gail. Structure preserving integration of constrained
multirate systems. International Conference on Scientific Computation and Differential Equa-
tions (SciCADE), Valladolid, Spain, 16-20 September 2013.

18. M.W. Koch, and S. Leyendecker. Optimal control of monopedal jumping movements . 5-th
GACM Colloquium on Computational Mechanics, Hamburg, Germany, 30 September - 02 Oc-
tober 2013.

19. M.W. Koch, and S. Leyendecker. Structure preserving simulation of non-smooth dynamics and
optimal control. Bayerisch Tirolerisches Mechanik Kolloquium, Erlangen, Germany, 23 Novem-
ber 2013.

20. S. Leyendecker. BIOSOL, Ohm-Krabbler und künstliche Muskeln. (Bionicum Forschung) Sta-
tusseminar Bionik in Bayern, Nuremberg, Germany, 28 November 2013.

21. S. Leyendecker. A discrete variational approach to optimal control problems in multibody dyna-
mics. Invited lecture, Eleonore-Trefftz-Vorlesung, TU Dresden, Dresden, Germany, 18 December
2013.
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6 Social events

6 Social events

Berg 2013

New building
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6 Social events

Nikolaus hike

Christmas party 2013 together with LTM
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