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1 Preface

This report summarises the activities in research and teaching of the Chair of Applied Dynamics
at the University of Erlangen-Nuremberg between January and December 2015. Part of LTD is the
Independent Junior Research Group in the DFG Emmy Noether Programme ‘Simulation and optimal
control of the dynamics of multibody systems in biomechanics and robotics’ that has been at the
University of Kaiserslautern from May 2009 to March 2011.

The main direction of research is computational dynamics and optimal control. Efficient technologies
for dynamical and optimal control simulations are developed, facing contemporary life science
and engineering problems. The problems under investigation come from biomechanics (natural or
impaired human movements and athletic’s high performance) and robot dynamics (industrial, spatial
and medical) as well as the optimisation and optimal control of their dynamics. Further topics are the
modelling and simulation of biological and artificial muscles (as electromechanically coupled problems),
multiscale and multirate systems with dynamics on various time scales (examples in astrodynamics as
well as on atomistic level), higher order variational integrators, Lie group methods and viscous beam
formulations as well as research on structural rigidity and conformational analysis of macromolecules.
The development of numerical methods is likewise important as the modelling of the nonlinear
systems, whereby the formulation of variational principles plays an important role on the levels
of dynamic modeling, optimal control as well as numerical approximation, yielding a holistic approach.
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3 Research

3.1 Emmy Noether Independent Junior Research Group

The Emmy Noether Programme by the German Research Foundation (DFG) supports young re-
searchers in achieving independence at an early stage of their scientific careers. Between May 2009
and March 2011, the Emmy Noether Independent Junior Research Group ‘Simulation and optimal
control of the dynamics of multibody systems in biomechanics and robotics’ has been affiliated with the
University of Kaiserslautern. The group has been transferred to the University of Erlangen-Nuremberg
in April 2011 being now part of the Chair of Applied Dynamics.

3.2 Bionicum

The Bavarian Environment Agency (LfU) (being the central authority for environmental protection
and nature conservation, geology and water resources management) has established the centre for
bionics ‘bionicum’ in 2012, consisting of a visitors centre in the Tiergarten of the City of Nuremberg
with a permanent exhibition and three research projects with a total financial volume of eight million
Euro. One of the projects investigates artificial muscles. The modelling and simulation of the dielectric
elastomer actors is developed at the LTD while the Institute for Factory Automation and Production
Systems (FAPS) works on the fabrication.

3.3 BaCaTeC

The Bavaria California Technology Center at the University of Erlangen-Nuremberg supports newly
initiated cooperations between researchers from Bavaria and California. Between July 2014 and De-
cember 2015, BaCaTeC sponsored the LTD for the established collaboration with the Stanford Syn-
chrotron Radiation Lightsource (SSRL) on ‘Inferring rigid substructures in proteins from X-ray data
using the null space topology’. The project ended successfully, with two scientific publications this year
in the Journal of the Mechanics and Physics of Solids and the Proceedings in Applied Mathematics
and Mechanics.

3.4 GAMM and GACM

Sigrid Leyendecker has been elected as an Executive Council Members of the German Association for
Computational Mechanics (GACM) for the period of January 2013 to December 2016. The objective
of GACM is to stimulate and promote education, research and practice in computational mechanics
and computational methods in applied sciences, to foster the interchange of ideas among various fields
contributing to computational mechanics, and to provide forums and meetings for the dissemination
of knowledge about computational mechanics in Germany.

In February 2014, she has further been elected as a member of the Managing Board of the Interna-
tional Association of Applied Mathematics and Mechanics (GAMM) for two years. GAMM promotes
scientific development in all areas of applied mathematics and mechanics, e.g. via the organisation of
workshops, in particular for younger scientists, and the international scientific annual GAMM meeting.

3.5 Cooperation partners

Besides numerous worldwide cooperations with scientists in academia, the LTD is in contact with other
institutions and industrial partners. The LTD cooperates with the Fraunhofer Institute for Industrial
and Economical Mathematics (ITWM) in Kaiserslautern on common interests like biomechanics and
nonlinear rod dynamics for wind turbine rotor blades. A cooperation with the AG wearHEALTH
and AG Augmented Vision, Department Computer Science, TU Kaiserslautern and German Research



Center for Artificial Intelligence (DFKI), aims at bridging the gap between motion capturing and
biomechanical optimal control simulations. In collaboration with the Stanford Synchrotron Radiation
Lightsource (SSRL), the LTD does research on structural rigidity and conformational analysis of
biomolecules.

3.6 Scientific reports

The following pages present a short overview on ongoing research projects pursued at the Chair of
Applied Dynamics. These are partly financed by third-party funding (German Research Foundation
(DFG), Bavarian Environment Agency (LfU)) and in addition by the core support of the university.

Research topics

Complezx frequency response for linear beams with Kelvin-Voigt viscoelastic material
Holger Lang, Sigrid Leyendecker

Modelling protein conformational transitions with clash- and constraint-guided motion planning
Dominik Budday, Sigrid Leyendecker, Henry van den Bedem

Numerical convergence study for variational multi rate integrators
Tobias Gail, Sina Ober-Blébaum, Sigrid Leyendecker

Optimal feedback control for constrained mechanical systems
Daniel Glaas, Sigrid Leyendecker

Towards bridging the gap between motion capturing and biomechanical optimal control simulations
Ramona Hoffmann, Tobias Gail, Bertram Taetz, Markus Miezal, Gabriele Bleser, Sigrid Leyendecker

Multisymplectic variational integrators for PDEs of geometrically exact beam dynamics using algo-
rithmic differentiation
Thomas Leitz, Sigrid Leyendecker

Time transformed mized integer optimal control problems with impacts
Maik Ringkamp, Sina Ober-Bloébaum, Sigrid Leyendecker

Dielectric elastomer actuated multibody systems
Tristan Schlogl, Sigrid Leyendecker

Construction and analysis of higher order variational integrators for dynamical systems with holo-
nomic constraints
Theresa Wenger, Sina Ober-Blobaum, Sigrid Leyendecker



Complex frequency response for linear beams with Kelvin-Voigt viscoelastic material

Holger Lang, Sigrid Leyendecker

We inspect the complex frequency response for linear homogeneous and uniform beams with Kelvin-
Voigt viscoelastic material [2, 4]. The dynamic motion of such a beam is described by the real
displacement function u(z,t) satisfying the partial differential equation

e = ax\ Bl T 50s
denote the undeformed arclength parameter of the centreline and the time, respectively. Further,
L > 0 is the total length of the beam and A > 0 is its cross section area. Thereby, E > 0 denotes the
extensional (i.e. Young’s) modulus, n > 0 the extensional viscosity of the material [3, 4], where o > 0
is the mass volume density. The function n = n(z,t) is a prescribed exterior axial force line density
acting along the rod. For n = 0, the well-known equation of motion for a purely elastic (i.e. Hookean)
axial beam is rediscovered [1, 5]. We rescale the involved magnitudes in (1) according to

1 E

Then, equation (1) becomes free of any physical dimension and reads

) 2
0“u 8( Ou 8u>+n where 0<z<L 0<{<o0 (1)

U = U”—I—ZCU”—I—N where 0<¢é<1 0<7< (2)

Here (-) = 0(-)/0r and ()’ = 9(-)/0¢. The only remaining independent model parameter is the
viscosity ¢ > 0.

As an example, we consider the ‘cantilever’ or ‘clamped-free’ problem with boundary conditions
U(0,7) = U'(1,7) = 0. We assume that N(§,7) = 0. It is straightforward to see that real eigen-

solutions of (2) take the form
Ak COS (Qk\ /1 — Q%Qﬂ 7’) + Bk sin (Q]ﬂ /1 — QiCZ T) ifC < (I:

Up(&,7) = e % sin(Q4€) { Ay + Byt ifC=¢ (3)

Apexp (/22 —17) + Brexp (— Qe /32— 17) if (> ¢

for k =0,1,2,.... Here, the numbers

1 1
O = (k—i— 5)77 resp. ¢ o= o (4)

denote the k-th natural undamped eigenfrequency of the beam resp. the critical viscosity of the k-th
eigenmode as defined in [2]. Note that by construction, they do not carry any physical dimension.
Note that — coincidentally — Qj represents the k-th wave number of the beam [1, 5]. We define the
total critical viscosity by

¢ =-

For the boundary conditions under consideration, we have (* = 2/m.

The plots in Figures 1 and 2 display the displacement U(1,7) and the strain U’(0, 7) of the transient
analytic displacement solution U (&, 7) of (2) under the initial conditions U(£,0) = &, U(€,0) = 0 in
the case of free vibrations. U (&, 7) can be expressed as linear superposition of the contributions in (3)
with appropriate integration constants Ay and Bj, uniquely determined by the initial conditions. The
contribution Uy (&, 7) is oscillatory for each k satisfying ¢ < (i, but purely viscous for each k satisfying

¢ > (k-



Figure 1: Transient displacement solution U(1,7) for free vibrations in the time domain

For ¢ = 0 (grey), the first undamped eigenfrequency is given by ¢ = 7/2. This corresponds to
the oscillating period of precisely 27/y = 4 in 7-time.

Slight damping for ¢ = 0.01¢* (green), corresponding to ¢ = 0.01¢j = 0.03¢} = 0.05¢5 = ..., or
even ¢ = 0.1¢* (orange), corresponding to ¢ = 0.1¢5 = 0.3¢} = 0.5¢3 = ..., damps out all higher
frequent contributions.

For ( = ¢* (red), mode 0 is damped out critically. Modes 1,2,... are overdamped.

For even larger damping, ¢ > ¢* (brown), there is purely viscous creep.

The plot in Figure 3 displays the real amplitude (i.e. norm) ||Uq(1)]| of the complex frequency response
function Ugq(€) at € = 1, the function U (€, 7) = Uq(€)e™* being the node displacement response under
exterior forced harmonic excitation U'(1,7) = e
boundary conditions U(0,7) = 0 at the rod’s left end £ = 0.

7 at the rod’s free right end ¢ = 1 under clamped

For ¢ = 0 (grey), each Q = Q according to (4) produces a pole (yielding a resonance catastro-
phe). Arbitrary high frequencies may be excited, cf. [1, 5].

Very slight damping ¢ = 0.001¢* (blue) regularises these singularities, as expected. Thus,
resonances become finite.

Slight damping, e.g. for ( = 0.01¢* (green) resp. ¢ = 0.1¢* (orange), damps out all vibrations
with frequencies larger than Qg resp. Q1. The lowest peak at Q < Q¢ = /2 contributes to the
well recognisable smallest frequency in the transient solutions on the left.



Figure 2: Transient strain solution U’(0,7) for free vibrations in the time domain

e For ( > (*, no vibrations are possible any more. (( = ¢* is in fact the smallest viscosity for
which all oscillations are absorbed.)

Independent of the value of (, each amplitude curve ||Uq(1)| converges to unity for 2 = 0, which
comprises the important special case of statics. At = 0, the function ||Ugq(1)|| possesses vanishing
slope, if ¢ < (*.

The results in Figures 2 and 3 are obtained numerically by the use of the finite element method with a
sufficiently large number of 400 linear elements [6]. After semi-discretisation, the transient analytical
solutions, depicted at the left, are gained by the time integration methods ODE45 (for ( = 0) and
ODE15s (for ¢ > 0) in MATLAB [7]. It can be shown that in the context of finite dimensional linear
dynamic structures [1, 5], Kelvin-Voigt viscoelasticity for linear beams leads to structural damping, if
the material and geometry data are homogeneously distributed.

Further discussion, analytical aspects and the treatment of linear torsional and bending beams of
Euler-Bernoulli kind with Kelvin-Voigt material are part of further investigation and research.



Figure 3: Amplitude solution ||Uq(1)|| for harmonic forced excitation in the frequency domain
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Modelling protein conformational transitions with clash- and constraint-guided motion
planning

Dominik Budday, Sigrid Leyendecker, Henry van den Bedem

Proteins exist as interconverting conformational ensembles, exchanging between substates to perform
their function. Advances in experimental techniques give us unprecedented access to structural snap-
shots of their conformational landscape. However, computationally modeling how proteins use collec-
tive motions to transition between substates is challenging owing to conflictive objectives: distance
minimization, clash prevention, and maintaining a folded, authentic state. We developed a robotics-
inspired motion planning procedure to connect two substates that overcomes the rugged landscape by
introducing dynamic, interatomic constraints. This algorithm is based on our molecular framework
[1, 2] that describes proteins as kinematic linkages. We enforce clash-preventing, holonomic constraints
for pairs of atoms whenever their distance falls below a predefined threshold, which balances clashes
and flexibility.

Figure 1: A protein’s flexibility is highly constrained by hydrogen bonds (shown in pink) and steric
clashes (shown as spheres) (left). The constraint Jacobian matrix reveals in a column which
cycles restrain a degree of freedom and in a row which degrees of freedom are part of an
individual cycle. This nesting of cycles propagates collective motion. A new cycle, i.e. an
additional row, expands the network (middle). Geometry of two clashing atoms at contact
(right)

Our molecular framework represents proteins as kinematic spanning trees, with groups of atoms as rigid
body vertices and covalent, rotatable bonds as links or edges with a torsional degree of freedom [1, 2].
Non-covalent hydrogen bonds are encoded as pentavalent holonomic constraints ®(q) = 0 € R™
that only allow a rotation about their bond axis, which lead to m nested, interdependent cycles that
require coordinated changes of the d torsional angles g € R¢ in the molecule. Admissible velocities ¢
lie in the nullspace of the constraint Jacobian matrix J, i.e. Jg = 0. The nullspace basis N relates
independent velocities 4 to admissible velocities via ¢ = N, which allows us to identify rigidified
dihedral angles and hydrogen bonds [1, 2]. In this spirit, a nullspace projection A, = NNT§, of a
trial vector d, provides access to efficiently sample conformation space while maintaining constraints
in linear approximation. Using a seed conformation, we obtain a new sample via gpew = Gseea+Aq. To
account for multi-chain proteins and complexes, we link the spanning trees of individual chains by an
additional covalent bond taken from the set of inter-chain hydrogen bonds. In addition to hydrogen
bonds, clashes restrain a protein’s flexibility (Figure 1 (left)). Figure 1 (right) shows the contact

conformation of two atoms centered at p; and ps. The unit normal vector at contact is n. = |£ ;:g h,




tangent vectors are denoted by t.. We define the clash distance d as the sum of their van der Waals
radii d = cf(r1+7r2), with a scaling parameter cs. If a small perturbation A, results in a conformation
with |p2 — p1| < d, the sample is discarded and, instead, a new constraint

T Op2 op1\ .

nt (e =)= .
is formed. This equality constraint maintains the distance along n. and only allows a joint move in
n. direction, or individual moves in t. direction, letting the atoms slide past each other. A basis for
the new nullspace is given by NN, € R4 (@="") with ' the rank of the resulting Jacobian.
We incorporate a bidirectional rapidly exploring random tree [3] to identify possible transition path-
ways in proteins. This motion planning strategy simultaneously expands a forward and a reverse tree
from the initial conformation @;;; and target conformation giur4et to find a connecting path. We in-
tegrate our Dynamic Clash Avoiding Constraint (DyCAC) strategy to iterate along clash boundaries
to overcome barriers in conformation space and identify new, clash-free conformations.
We generate an entirely random conformation and expand the forward tree towards the random
conformation using the node ggseeq closest in heavy-atom RMSD in the tree. To direct the search
towards the final conformation, we introduce a bias at which an actual target is selected at random
from the opposing tree with a frequency of 60%. An admissible velocity is obtained by calculating
a mean squared distance (MSD) gradient 8, with respect to atom positions towards the target and
projecting the gradient. If a trial move d, leeds to a clash-free sample @ye, We append a new node
and edge to the forward tree. Following the 'CONNECT’ strategy [3], we use the new sample as seed
for the next iteration and proceed further to the same target. If d, leads to clashes, we add constraints
(1) to the clashing atoms. We re-apply d, a specified number of times, using the clash-free projection
equation NcpNg;(sq, until a clash-free sample is obtained. The new constraints are released at this
stage. If our search is unable to advance, i.e. we cannot find a new clash-free sample, we swap trees and
propagate in the other direction. After the swap, a new target conformation and the closest existing
node on the forward tree are computed. The procedure ends when the distance between the trees falls
below a threshold or when we reach a specified number of samples. We restart the algorithm every
1000 samples using the two closest nodes in heavy-atom RMSD on the forward and reverse tree.
If 8, leads to clashes, we add constraints (1) to the clashing atoms. We re-apply d, a specified number
of times, using the clash-free projection equation NcpNg;)éq, until a clash-free sample is obtained.
If our search is unable to advance, i.e. we cannot find a new clash-free sample, we swap trees and
propagate in the other direction. The procedure ends when the distance between the trees falls below
a threshold or when we reach a specified number of samples. We restart the algorithm every 1000
samples using the two closest nodes in heavy-atom root mean square distance (RMSD) on the forward
and reverse tree.
Figure 2 (left) shows the evolution of the fractional RMSD between the two propagating trees. In six
out of seven cases, the RMSD could be significantly reduced. Figure 2 (right) shows the forward and
reverse tree for the first 1000 samples of protein Gas, with color representing reduced mobility due to
additional clash constraints. Figure 3 finally shows the initial (left), target (mid-left) and final aligned
conformations of the forward and reverse tree (mid-right). We observe great agreement in the RAS
and the a-helical domain. The right panel shows the cumulative change of torsion angles during the
forward transition.



Figure 2: Evolution of RMSD (heavy atoms) between the two propagating trees during exploration
of the test proteins. We iteratively restart the RRT after 1000 samples (left). Forward
and reverse tree for the first 1000 samples of protein Gas. Color represents mobility at an
individual conformation due to additional clash constraints, with blue encoding no clash
constraint (right).

Figure 3: Conformational transition of Gas with initial, inactive conformation (left), active target
conformation (mid-left) and superimposed final conformations of the forward (dark blue)
and reverse (salmon) tree. The RMSD is 5.32A (mid-right). Cumulative change of torsion
angles between the initial and the final conformation of the forward tree. Thicker and
red-shifted backbone areas contribute more to conformational changes (right).
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Numerical convergence study for variational multirate integrators

Tobias Gail, Sina Ober-Blobaum, Sigrid Leyendecker

The integration of a mechanical system containing slow and fast dynamics has contradicting require-
ments. On the one hand, for a stable integration of the fast dynamics, tiny time steps are needed. On
the other hand, for the slow dynamics, larger time steps are accurate enough. Furthermore, too small
time steps increase the computing time unnecessarily, especially for costly function evaluations.

For this, multirate formulations split the system into subsystems [1] which can be solved with different
methods. To approximate the solution, rather than choosing one time grid we choose two time grids.
Figure 3 shows such a time grid with macro time grid and micro time grid. Here, the macro time step
is AT, the micro time step is At and AT > At holds. As described in the framework of variational
multirate integration [2] which is developed on the basis of variational integrators. This approach leads
to a reduction of computing time, see [3]. The numerical convergence is investigated for unconstrained
systems like the Fermi-Pasta-Ulam problem (FPU) illustrated in Figure 2 and systems subject to
constraints like the simple atomic model (SAM) shown in Figure 1.

Let a mechanical system be described by a Lagrangian with configuration vector ¢(t) € Q C R"
with @ a configuration manifold and velocity vector ¢ € T'(QQ C R" in the tangent space T'Q. Also,
let the mechanical system be constrained by the m®dimensional holonomic function of constraints
requiring g(q) = 0. Now, let the mechanical system contain slow and fast dynamics, characterised
by the possibility to split the variables into n® slow variables ¢° and n/ fast variables ¢/ with ¢ =
(qs,qf ) and n = n® + nf. Furthermore, we assume that we can split the potential energy into a
slow potential V(¢) and a fast potential W (g/). The action S is the time integral of the Lagrangian
L(q,q) = T(4) — V(¢) — W(gf). Via Hamilton’s principle requiring stationarity of the action §S = 0,
the constrained multirate Euler-Lagrange equations are derived. Here, T' denotes the kinetic energy
and A the Lagrange multiplier.

T
i@?_@V_ g A0
dt 0¢5  0q¢°

T
doT oV oW <8g> Ao

9(q) =0 (1)

The macro time grid provides the domain for the discrete slow variables ¢ = {q,‘j}szo with ¢} ~ ¢°(tx),

while the micro time grid provides the domain for the discrete fast variables qf; = {{qkm b o ch;Ol



@

——
a

Figure 2: FPU with 6 masses and slow and fast
variables

macro time grid
t{c—l tlk tk|+1 AT
T T 1 T T 1

0 m—1 m+1 P40 gm—1 gm gmel P
ti1 B G G toor =t et b At

micro time grid

Figure 1: SAM with slow and fast variables Figure 3: Macro and micro time grid

with q]{’m ~ qf (7). The domain for the discrete Lagrange multipliers is the macro and the micro grid,
for example on the micro time grid A\g = {{\7"}Y _, év:_ol with A7 = A(¢]"). The discrete Lagrangian
and the discrete constraints approximate the action over one macro time step.

te+1
La(G}, @3 @y A) = / L(g,4) — g(q)" - \dt.

ty

The sum over all time steps is the discrete action which approximates the continuous action. Via
a discrete form of Hamilton’s principle requiring stationarity for the discrete action, we derive the
discrete constrained multirate Euler-Lagrange equations. These equations form a nonlinear set of
equations which are solved using a Newton-Raphson method.

Quadrature rules are needed to approximate the action and constraints by discrete quantities. We
use e.g. the midpoint rule, the trapezoidal rule, an affine combination and finite difference. Different
quadrature rules can be chosen for the kinetic energy, both potential energies and the constraints and
lead to ”fully implicit”, ”explicit slow, implicit fast” and ”fully explicit” schemes.

The convergence is shown numerically for the FPU and the SAM example for the fully implicit, explicit
slow, implicit fast and the fully explicit quadrature schemes. The global error

eg = sup {llar —q(tr)ll} (2)

=U,...,

of the configuration as well as the error e, of the conjugate momentum is calculated for all quadrature
schemes at the macro nodes. Both global errors are plotted versus the macro time steps AT for the
FPU and for the SAM in Figure 4. We see on the left hand side convergence of order two for both
systems for the fully implicit scheme. On the right hand side, a convergence of order one is shown
for the fully explicit scheme. In the middle, there is a difference in order of convergence for the two
systems. The top left shows a convergence of order one for the FPU and the bottom plot shows a
convergence of order 1.5 for the SAM.
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Figure 4: Error of configuration and conjugate momentum with p = 5 and AT — 0, At — 0 for the
fully implicit scheme (left), explicit slow, implicit fast (middle) and fully explicit (right) for
FPU (top) and SAM (bottom)
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Optimal feedback control for constrained mechanical systems

Daniel Glaas, Sigrid Leyendecker

Today, a lot of mechanical systems have to operate with an improved performance compared to equal
constructions decades ago. Reasons therefore are e.g. higher energy costs and a globalised market with
more competitors. To stay competitive, engineers of a mechanical systems need to find an optimal
control algorithm.

Variational integrator and DMOC The variational integrator as a variant of a structure-preserving
integration scheme is used. The continuous Lagrange function L(q,q) = T(q,q) — V(q) and the



action integral S(q) = fOT L(q, ¢)dt yield the Euler-Lagrange euquations via a variational principle
[2]. Using a midpoint quadrature rule to approximate the action integral and applying a discrete
variational principle 6Sd({qk},iv;0) = 0 with configuration sequence g, =~ q(tx) for k =0,..., N; and an
approximation of the virtual work with control sequence {uk}ivéal, the Lagrange-d’Alembert principle
yields a discrete Euler-Lagrange equation in a ”position-momentum form that only depends on the
current and future time steps” [1]. This principle is applied to three different coordinate choices, at
first in minimal coordinates with g5 € Rf, p; € Rf, in redundant coordinates with ¢; € R”, pr € R"

by using holonomic constraints g(q(t)) = 0 € R™, G(qx) = % and the nullspace coordinates with

qx € R™, pr € RS using the nullspace matrix P7(qy) - GT(q) =0 € RF*("=f) " The equations for the
redundant coordinates in ”pg-formulation” are

OLa(qk, qr+1)

Dk + oq + (ks Qrt1, uk) — GT(Qk)/\kAt =0
9(qrs1) =0
OLa(qk, q
Pht1 = dékkﬂ) + Ff (qks G, uk)
qk+1

Together with initial and final conditions for the configuration and conjugate momentum, the discrete
equations serve as non-linear equality constraints for the minimisation of a given objective functional.
Applying the DMOC (discrete mechanics and optimal control, see [4, p. 49-52]) algorithm, an optimal
trajectory and according control input is calculated.

Riccati-controller Even when knowing an optimal trajectory wop = [qut popt]T of a system, in
reality the mechanical system will not follow the predefined path because of several perturbations.
The correction of these are done by feedback controllers. The main idea of the control mechanism is

; Uopt,k ~ 73 dynamic Legend:
storage Y system Ugpt, k- Optimal control input
+ z Topt,k* optimal system state
u k
Rk 2j,: measured state
€z, : error of system state
K, UR K addition'al control iIlPut
ug: summarised control input
€z,
Lopt,k A Tk
p\—y
+ —

Figure 1: Block diagram of general feedback control

to add an additional value ug to the optimal control input uy = up: +ur i based on the superposition
principle. In general, ug is defined as a function of e, for the time step k, i.e. ugy = f(ey,), with
ez, being the difference between the desired state space x,y and the "measured” state space z,
i.e. ey, = Toptk — T Often, a linear feedback multiplication with the feedback matrix Kj,

UR Kk = f(ea?k) = Kkeitk (1)

does fine. The resulting block structure is shown in Figure 1. In the background of the optimal

control approach, the Riccati feedback controller is commonly used to minimise a cost-function V =
Ne—1

> [e;{k Qrez, + uﬂ pBRUR K +eth QN €zy, With real weighting matrices QJy, and Ry. After linearising
k=0 ’

the system to dzpi1 = Ay - 6 + By - dug, the discrete Riccati equation (see [3, Eq. (14.5), (14.6)])



can be applied

-1
Py = Qi + AL PyAy — AyPeBl Ry + Bl PyBy] ~ Bl PoAx (2)
-1
Ky = [Rx + Bl P:By] By P, Ay (3)
Using symmetric positive definite matrices for Qr and Ry, P can be implicitly calculated as positive

defined solution of (2) (see [3, p. 298]). After that, the matrix K} as defined in (3) and the optimal
additional control input ug is calculated. Figure 2 shows the complete process of the optimal control in

h \
1
20 : k zo#x° !
'
' '
. variational integrator .
T ﬁ‘ 1 1
ANt X ! ! 1
! generation [Zopt ] i Uopt k ug | dynamic :
, '
optimal |i | storage O . !
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T control | [Uopt,ke] 't '
I | 1 1
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Figure 2: Block diagram of feedback control for optimal trajectories with the Riccati approach

a block diagram, beginning with the preprocessing of generating an optimal trajectory (green dashed
box). These results are the input for the variational integrator (red dashed box), which simulates the
behaviour of the real physical system and is extended by the Riccati feedback controller (blue dashed
box) to calculate up .

2D-pendulum The described algorithm is applied to the 2D- Y

pendulum as shown in Figure 3. The configuration, momentum und x

actuation vectors are defined as ‘ *
e minimal: qin, = 0, Pin = P9 Umin = U | F, A

i }Tv Pred = [ z py]Tv
Ured = [FJ»‘ Fy] iﬁ m Fa

e redundant: q..q = [ac Y

]T. Figure 3: Parametrisation of
the 2D-pendulum

For comparing the Riccati-control algorithm for the three parametrisations, an optimal upswing from

00 = 0 to ANt = 7 is calculated in DMOC. For disturbed initial conditions 6y = 1, the corrected

trajectories of all three implementations are very similar compared to each other as plotted in Figure

4. Only during the time of 0.1s to 0.7s, there are some slight differences.

Based on this the control effort is compared, being the sum of all past time steps over a term weighting

T
e nullspace: dnull = [:E y] » Pnuldl = Pos Upyll = [F z By
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Figure 4: Comparison of the configuration trajectory of variational integrator with feedback controller
for all coordinate choices for T'=3s and At=0.01s

k
the effort of the additional control V,, = > u%iRuR,i. In Figure 5, V,,, is plotted for all three
i=0
coordinate choices.

8,000 -
£ 6,000
& 4,000
5} f
2
2 2,000 — effortmin
S —— effort,eq
—— efforty,u
Il Il I J
0 1.5 2 2.5 3

time in s

Figure 5: Comparison of the control effort of variational integrator with feedback controller for all
coordinate choices for T=3s and At=0.01s

All graphs are strictly increasing as being a sum of positive terms and the gradient corresponds to
the difference of the controlled trajectory to the reference trajectory. After the first second, all three
sums are changing only very slightly. Comparing the absolute values, the minimal coordinates scheme
requires least control effort with the best accuracy whereas the redundant coordinates scheme has the
highest control effort. The nullspace parametrisation is situated in the middle between the other two.
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Towards bridging the gap between motion capturing and biomechanical optimal control
simulations

Ramona Hoffmann, Tobias Gail, Bertram Taetz, Markus Miezal, Gabriele Bleser, Sigrid Leyendecker

Within this work, we make a first attempt towards improving human motion capture by combining
motion capturing measurements and optimal control simulations of a human steering motion. We start
with measurements obtained from a stationary optical system, a widespread capturing technology in
biomechanics and movement science, under laboratory conditions. From an optimal control point of
view, the goal is to increase the realism of simulated human motion through measurements. From a
motion capturing point of view, the goal is to compensate for measurement sparsity, errors or lacks
through meaningful assumptions based on biomechanical simulation. Our preliminary results show
that a fusion of physical laws, biomechanical simulation and real data within an optimal control
simulation framework indeed have the potential to improve motion capture and synthesis with respect
to some of their inherent problems.

Human arm model For the simulation, the human arm is modelled as a multibody system consisting
of three rigid bodies. A cylindrical upper arm is fixed in space by a spherical joint representing the
shoulder. The elbow and wrist are modelled as cardan joints connecting the cylindrical forearm to the
upper arm and the parallelepiped shaped hand to the forearm, respectively (see Figure 1). The bodies’
dimensions are personalised for the subject and the optical marker positions are placed manually in
the model based on measurements. Thus, the exact definition of the personalised model is already a
result from the measured data.

Figure 1: Human arm model with marker positions used for optimal control simulations. The three
markers around the elbow are denoted el_in, el_out, el_tip. The two markers at the wrist are
denoted wr_th and wr_pi. There is one marker on the hand.

Optimal control problem and simulation Two inherently different approaches for the solution of
an optimal control problem are the so called indirect (first optimise then discretise) and direct (first
discretise then optimise) approach, see e.g., [7, 2]. In this work, a direct transcription method called
discrete mechanics and optimal control for constrained systems (DMOCC), see [4, 6], falling into the
latter class, is used to approximate the solution at the time nodes tg,t1 = tg + h,...,txy = tg + Nh
on an equidistant time grid with time step h. As described in detail in [1], the kinematic description
of the rigid multibody system is based on a redundant configuration variable ¢ € R,k =0,...,N
consisting of the placement of the centre of mass and the orientation represented by three directors that
are aligned with the principal axes of inertia for each rigid body, respectively. A set of 29 holonomic
constraints ensure orthonormality of each body’s directors (thus they represent the columns of a
rotation matrix) as well as the coupling by the joints, thus the complete model has 7 degrees of freedom.



A nodal reparametrisation F,; : R7 — R3% updates the redundant configuration qzr1 = Fy(ug,1, qx)
for k = 0,...,N — 1 in terms of discrete generalised coordinates ug = {uk},lcvzl with u, € R7 such
that the constraints are fulfilled. In contrast to a formulation in terms of minimal coordinates (joint
angles) from the beginning, this procedure ensures that rotations are always small and thus avoids
the danger of singularities. The configuration variable ¢ can be treated in a linear space, yielding
a Lagrangian function with a constant mass matrix. A structure preserving scheme (symplectic-
momentum with good energy behaviour) approximates the dynamics. It is derived via a discrete
variational principle, see [5], where a discrete Lagrangian Ly : R3 x R3¢ — R approximates the action
in one time interval. The discrete Euler-Lagrange equations resulting from the stationary condition for
the discrete action are reduced to minimal dimension using a discrete null space matrix P(q;) € R36%7
and the nodal reparametrisation Fy resulting in (2), see [1, 3]. They involve the left and right control
forces f]j_l = B(qx) - k-1, fr, = Blar) - € R36 which are computed from the discrete generalised
controls 75 = {Tk}ivz_ol with joint torques 7, € R” (assumed to be constant during one time interval)
using the input transformation matrix B(gy) € R™*35, see [4] for a detailed introduction to DMOCC.
The optimal control problem is simulated solving the following nonlinear constrained optimisation
problem using an SQP algorithm in Matlab. Minimisation of the objective function Jy

min Jg(ug, 74) (1)

Ud,Td

subject to the fulfilment of the discrete equations of motion

P (qy) - [D2La(ge-1,ar) + D1La(qr, F(uks1,qi)) + fi, + £ ] =0 (2)

boundary conditions
s(ug,79) =0 (3)

and path constraints
h(ud,Td) S 0 (4)

We perform optimal control simulations with different objective functions and path constraints. The
measured marker positions are part of the inequality constraints. First a feasible trajectory is gener-
ated, after that physiologically motivated cost functions are used:

e Feasible trajectory. State and control trajectories that are feasible in the sense that they fulfil the
equations of motion (2) and boundary conditions (3) are obtained my minimising the objective

Ja(ug, 74) =1

with the additional path constraints (4) imposing an upper bound e € R on the marker position’s
residual errors taking the form
N
h(ug,7a) =Y (mg —mg)" - (mg —my) — € ()
k=0
e Minimisation of torque. The second cost function minimises the control effort

At
Ja(ud, 74) Z T * Tk

subject to the discrete equations of motion (2), boundary conditions (3) and path constraints

(5).



e Minimisation of torque change. In the last problem, the temporal torque change is minimised,

thus
N

Ja(ug, 1) = Z

while the discrete equations of motion (2), boundary conditions (3) and path constraints (5) are

fulfilled.

7—k+1 — Tk

Results Reducing the measurement update rate results in a range between 100 and 7.69 Hz. Figures
2 and 3 show the error statistics for the tested measurement rates based on a piecewise constant and
a piecewise linear initial guess, respectively. Error is here defined as the Euclidean distance between
the configurations ¢ obtained from the reference simulation (using a measurement frequency of 100 Hz
in the feasible, torque minimising and torque change minimising simulation) and the simulation with
reduced measurement update rate at each time node t;,k = 0,..., N. The figures then report the
average error and its standard deviation for a complete simulation (y-axis) over the measurement rate
(z-axis). Each vertical line (illustrating the standard deviation) represents one successful simulation.
Missing vertical lines indicate a simulation failure, e.g., due to divergence of the SQP algorithm. Note
that errors are computed only in the time interval [0, 0.39]s, since mag is the last measurement used
in all simulations.
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Figure 2: Mean errors and standard deviations based on piecewise constant initial guess.

When comparing Figures 2 and 3, in particular the close-ups, it can be observed that some simulation
experiments have failed below 20 Hz when using a piecewise constant initialisation. Hence, linear
interpolation enables convergence at very low measurement update rates. Moreover, it can be seen in
the figures that linear interpolation also reduces the overall errors. This is particularly visible for the
feasible solution.

When looking at Figure 3, as expected, the errors and standard deviations increase with reduced
measurement update rate for all solutions. However, the error of the feasible solution is consistently
higher than the error of the solutions including a physiological cost function term. Below 20 Hz, errors
and standard deviations of the feasible solution increase significantly and the last two simulations
even fail. In contrast, minimising torque and torque change show a better behaviour. Minimal
torque shows the lowest error until 12.5 Hz, however, then starts to increase significantly, and fails
for the last simulation at 7.69 Hz. Minimal torque change successfully converges for all experiments
and shows a comparably small error increase even at the lowest measurement frequencies. These
observations confirm that, in our experimental settings, biomechanical simulation can compensate for
low measurement update rates. Moreover, while the torque minimising solution provides the most
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Figure 3: Mean errors and standard deviations based on piecewise linear interpolation for initial guess.

accurate results down to a certain measurement rate, the torque change minimising solution provides
acceptable accuracy for even lower measurement update rates, hence adds further stability. To provide
more detailed insights, Figure 4 illustrates the error evolution in ¢ (configuration error) for two concrete
measurement update rates (using linear interpolation for the initial guess). We chose 33.3 Hz (every
3" measurement) as representative for a mid-range frequency and 8.33 Hz (every 12" measurement)
as lowest frequency with results for all solutions.

These figures confirm the above observations. In addition, it is nicely visible in Figure 4(b), that the
errors show a periodic pattern induced by the measurement update rate, i.e., the error becomes lower
around measurement points. This is most apparent for the feasible solution, but also clearly visible
for the minimal torque solution. Interestingly, the minimal torque change solution, even if showing a
slightly higher error than the minimal torque solution for the mid-range frequency, is much less affected
by the measurement points. This might indicate a higher independence from measurements, a better
ability to deal with errors in these and, as a result, a higher robustness. On the other hand, also
error of the time stepping equations (with respect to an analytical solution) grows as the simulation
advances in time. This point needs further investigation in the future. One can also observe that the
error tends to decrease throughout the simulation, in particular for the low measurement update rate
and the minimal torque and torque change solutions.
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Figure 4: Error evolution in configuration q.



From the investigated objective functions here, minimising torque change shows the most realistic and
natural results and the highest stability with respect to the reduction of the measurement frequency.
The most obvious future task is to confirm these observations with different types of motions and other
physiologically motivated objective functions. Furthermore, it is worthwhile to take into account also
measurements of the bodies orientation instead of only marker point positions and information on the
accelerations and angular velocities measured from inertial sensors. In particular, the latter means
not merely the inclusion of more and different type of data, but the move towards ambulatory motion
capturing may overcome many of the shortcomings of optical stationary systems discussed in the
introduction and enable a wide range of applications outside the lab. However, also many technical
aspects need to be investigated. If there is knowledge on the precession or error-proneness of certain
measurements, weighting factors can be introduced accordingly. Secondly, not only the measurement
rate, but also the number of marker positions can be reduced, excluding ,e.g., those with most soft
tissue artefacts.

Finally, the inclusion of further information known about the considered motion, like the presence
of obstacles in the environment or contact to the surroundings, as, e.g., of the hand moving on a
circle due to its contact to the steering wheel, may help to increase the realism and naturalness of the
simulated motion.
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3 Research

Multisymplectic variational integrators for PDEs of geometrically exact beam dynamics
using algorithmic differentiation

Thomas Leitz, Sigrid Leyendecker

For the simulation of geometrically exact beam dynamics [4], a multisymplectic Lie-group variational
integrator [3] is derived. Based on the implementation of the discrete Lagrangian, algorithmic differ-
entiation is used in the computation of both, the discrete Euler-Lagrange equations, and the Jacobi
matrix needed for the Newton-Raphson iteration. Using s,¢ € R as arc-length and time paramters,
translational degrees of freedom of the cross-sections are parameterized using three-dimensional vectors
z (s,t) € R? and rotational degrees of freedom are parameterized using unit-quaternions p (s,t) € H'.
In geometrically exact beam dynamics, the cross-sections stay plane and undeformed at all times. The
Lagrange density for geometrically exact beams L (p,w,Q, x, 2,2, s) is given in terms of the transla-
tional velocities and strains & = %x and 7/ = %m and rotational velocities and strains w = 2pp and
Q2 = 2pp’. Hamilton’s principle leads to the continuous Euler-Lagrange equations in the form of partial

differential equations. The discrete Lagrangian L7, is an approximation of the action integral of an

Figure 1: A beam with 44 elements

element in a regular spacetime grid and the discrete action Sq is the sum over all discrete Lagrangians
covering spacetime. Each spacetime element has four nodes, a is the space index and j is the time
index, thus we write pfl =p (tj , sa). Positions are interpolated bilinearly and for the rotations, we
use quaternion linear blending (QLB) and subsequent differentiation with respect to s and ¢ in order

to derive discrete velocities and strains. With a; = % and ' = 8‘1‘%, P! is the interpolation
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Figure 2: Spacetime element for the interpolation between the four corners
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between the four nodes of one spacetime element (see Figure 2)

(1-25% ((1 — ;) ph+ aipé) + B ((1 - ozi)piJrl + aipiH)
(1-p579) <(1 - 041‘)17‘2 + Oéipé) + 6 ((1 - Oéi)pflﬂ + aipi+1> H

PJ(s,t) = H

and the discrete angular velocity and strain are

wl (s,t)=2PIPI = — -~ [(1 —BZ) R

/\

A+ (8079 ()

+ (1-8)6 (S (A h) + S (eard™) )]
QI (s,t) = 215({P’i = B2 As, {(1 - ai)2 R (ﬁép£+1> + (ozi)2 3 (ﬁ{lﬂpﬁ%)

+ (1= ai)ai (S (ped2) + 8 (22700 ) )|

According to the discrete Hamilton’s principle, the variation of the discrete action vanishes,
i.e. 853 = 0, while holding the boundaries of spacetime fixed. This leads to the coupled mixed frame
discrete Euler-Lagrange equations

oL, aLJ ! oL’ | 1
13 + P —— +
5 <p7 o + P, pf} o p’ pg B
oL, aLz o oL’ oLy

Ly . 1 :
oz, oz, oz, oz,

oo oo oo

These form the variational integrator and are implemented using the C++ algorithmic differentiation
library CppAD [1] in conjunction with the linear algebra library Eigen [2]. This object oriented
approach leads to rapid development of new integrators through the combination of the expressive
syntax of Figen and the elimination of the need for symbolic derivatives by algorithmic differentiation.
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Time transformed mixed integer optimal control problems with impacts

Maik Ringkamp, Sina Ober-Blobaum, Sigrid Leyendecker

Mixed integer control systems are used to model dynamical behavior that can change instantly, for
example a driving car with different gears [1]. Changing a gear corresponds to an instant change of the
differential equation what is achieved in the model by changing the value of the integer control function.
The optimal control of a mixed integer control system by a discretize-then-optimize approach leads
to a mixed integer nonlinear optimization problem (MINLP) that is not differentiable with respect to
the integer variables, such that gradient based optimization methods can not be applied to solve the
MINLP at once. In this work, differentiability with respect to all optimization variables is achieved
by reformulating the mixed integer optimal control problem (MIOCP) using a time transformation.
The time transformed mixed integer optimal control problem (TMIOCP) is shortly introduced, it
allows to change the sequence of active differential equations while the discretized problem does not
have integer optimization variables. Thus, the discretized TMIOCP is an ordinary nonlinear program
(NLP) and gradient based optimization methods can be applied to solve it. In contrast to other works,
here MIOCPs where impactive switches are caused due to mechanical contact are taken into account.
Forced and constrained Hamiltonian systems with a Hamiltonian H; : R?? x R™ — R, holonomic
constraints glh : R™ — R"s" and control forces f; : R™ x R™ x R™ — R™ for each integer value
leV={1,2,...,np} are investigated. The purely continuous differential algebraic equation for each
1 €V is defined as follows

OH,
. _ OH; 1
0=, @p) (1)
T
. 0H, (g1
- =P p) = DI () 2
b= fla,pv) = =5 =a:p) = —5 —(4) (2)
0= g7'(q) (3)
The functions ¢ : I — R™ and p : I — R"™ (for a time interval I = [to,ty]) represent the position and
o(at)"

the momentum of the dynamical system, 87(1(q)/\7 with time dependent \(t) € R"s" represents
the constraint forces. A Hamiltonian is typically given by H;(q,p) = Ti(¢,p) + Vi(¢) with the
systems kinetic energy Tj(q,p) = 3p’ (M;(q)) "' p and its potential energy Vi(¢). The matrix M;(q)
is symmetric and positive definite and thus invertible. A simple example for a force function is the
thrust of an engine, that is directly given by u with f;(q(t), p(t), u(t)) = u(t). Denoting the right-hand
side of (1) and (2) by F(z,u,l) and the state by = = (q,p), leads after the time transformation to
the differential equation (5). Further, the holonomic constraints g/'(g) = 0 can be integrated in the
integer dependent mixed state-control constraints g(x, u,!) < 0 and lead after the time transformation
to (7). The constraints g(z,u,l) < 0 are in general used to restrict  and u to specific domains
Dy = {(z,u) € R"™ x R™|g(x,u,l) < 0} if the integer value [ € V is active (cf. [2]). Further
possible integer independent mixed state-control constraints (6), constraints associated with the time
transformation (9), (10) as well as boundary constraints (8) in combination with an objective (4)
define the TMIOCP as follows



Definition 1 (TMIOCP)

;I}LH&) J*(x,u,w) = /w(T)B(x(T),u(T),vN,n(T)) dr (4)
I

s. t (1) = w(r)F(2(7),u(T), Onn(T)) forae 7€l (5)

go(z(7),u(r)) <0 fora.e. €T (6)

w(T)g(z (1), u(T), onpn(T)) <0 forae. T €1 (7)

r(z(to),z(tn)) =0 (8)

w(r) >0 forae. T €1 (9)

Al = /w(s)ds (10)

Here, On,, € £L>(I,V) denotes the fixed integer control function and w € £>°(1,R) the time control,
see [2]. The Equation (9) ensures that the transformed time does not move backwards and (10)
ensures that major time grid nodes are fixed. It is necessary to fix the major time grid nodes to
guarantee a certain accuracy of the approximated trajectories and a fixed total maneuver time. The
time transformed differential algebraic equation (1)-(3) is discretized for each integer variable [ € V
by the Rattle integrator [3]:

wihy, <8H O0H >

0=0ak — Ght1 + —— aip(pkﬁ-l/% Q) + aip(pk—i—l/Qan—i-l) (11)

2
wrhy [ OH 0 gh T
0=pk —Pry1/2 — l; g <&](pk+1/2a ) + (82) (qr) M\ — f(qk> Prs k) (12)
0 = wig) (qrt1) (13)
wehi (OH a(gM"
0 = Prt1/2 — Pht1 — kz i (al(l?kﬂ/% Qr+1) + (8lq) (@r+1) ke — f(qr, Pr, uk) (14)
a(g)" OH
0= wk(alq)(Qk—l—l)ap(pk-&-la Q+1) (15)

Here, the equations (14) represent a projection step with uy € R"s"

the holonomic constraints on velocity level.
The first example of an impactive hybrid system that is considered is a double pendulum, where only
the first angle is actuated and the second angle is lockable, see Figure 1 (left). In the case that the

and the equations (15) represent

system with the integer variable [ = 1 is active, the pendulum is unlocked and glh and % are replaced
by zero, such that the equations (13) and (15) vanish. In the case that the system with the integer
variable [ = 2 is active, the pendulum is locked and it holds that g/*(gx+1) = (g2)k+1 — (g2)k, such
that the value of the second angle (g2)x+1 does not change if equation (13) is fulfilled. Further integer

T

dependent constraints g1 (qr, qr+1) = ((q1)k, (q1)k+1) < (5, 5) and go(qr, grt1) = —((q1)ks (q1)k41) <
(5,%) define the domains D; and Dy and assure that the pendulum is locked if the first angle is

greater than or equal to §. The boundary constraints (8) and the objective (4) are selected, such that
the optimized trajectory describes an upswing maneuver with minimal control effort | I u?dt. Figure 1
(middle and right) represents the results of the optimization using the gradient based IPOPT interior
point method [4].



lockable double pendulum J* =1.45861

........... oF

position1
control1

position2

Figure 1: Sketch of the lockable double pendulum (left). Locally optimal discretized state trajectory
(middle), control trajectory (top right) and the trajectory of the mass positions (bottom
right)
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Dielectric elastomer actuated multibody systems

Tristan Schlogl, Sigrid Leyendecker

Dielectric elastomer actuators (DEAs), also known as artificial muscles, belong to the group of smart
materials. If a voltage is applied to the elastic material, it contracts. The underlying functional
principle is based on contractive forces between opposite charges on a plate capacitor, as shown in
Figure 1. If the electrodes of the capacitor as well as the insulating material in between are both
elastic and not spatially fixed, attractive charges lead to a contraction. Dielectric actuators have a
high potential for replacing electrical drives in various systems. They can be used as actuators in



soft robotics, providing safe and robust humanoid systems. A computer model of the time dependent
behaviour of this smart material is used to accompany the manufacturing process and provide optimal
control for DEA actuated multibody systems.

Figure 1: Stacked actuator and the functional principle of a single element

A variational formulation of a three-dimensional, electromechanically fully coupled and time depen-
dent simulation model is presented in [2]. Via finite elements, the model allows to simulate arbitrary
geometries of dielectric elastomers including hyperelastic material behaviour and viscoelastic damp-
ing. It is based on the Maxwell equations for electrostatics, the mechanical momentum balance and
the theory of electromagnetic forces in deformable continua. The actuator model is coupled with a
multibody system consisting of rigid bodies and joint connections. This framework allows to simulate
multibody systems, e.g. humanoid robots, that are actuated by artificial muscles. The coupling be-
tween the finite element model of the muscle and the rigid structure is formulated at position level and
enforced by the Lagrange multiplier method, resulting in an index-3 system. A structure preserving
integration scheme allows solving the index-3 system directly and with numerical accuracy at position
level. Index reduction techniques are not used and there is no erroneous drift in the fulfilment of the
constraints. A certain representation of the rigid bodies called director formulation avoids any rota-
tional degrees of freedom and hence numerical instabilities associated with rotations. Additionally,
due to the director formulation, all constraints between the finite element model and rigid bodies are
linear. Therefore, the whole framework can be formulated in a very modular way.

The discrete Lagrange-d’Alembert principle for constrained systems reads

DlLd(Qm Qn—l-l) + D2Ld(Qn—17 Qn) - GT(Qn) - An
+£f(@ns @ns1) + F(@n-1,q2) =0
9(@ni1) =0

(1a)
(1b)

where Lg is the time discrete Lagrangian, g, the discrete configuration at time ¢,, G the Jacobian
of the constraints g and f the discretised external forces. D; is the derivative operator with respect
to the i-th argument of the succeeding function. The evaluation of (1) yields a non-linear structure
preserving time integration scheme [1].

Considering only kinetic and potential energies of the muscle model and introducing the configuration
T, containing all degrees of freedom of the muscle model at time t,, namely translations and electric
potentials associated with finite element cells, (1a) yields the integration scheme

Fr(Tn_l,Tn,Tn+1) =0 (2)

with the linearised form
F.+ K, Ar,,1=0 (3)

where K, = D3F,.. In contrast to the finite element configuration r, the configuration s contains all
degrees of freedom of the multibody system. Considering only energies of the multibody system, (1)



yield the integration scheme

TT(Sn) : Fs(sn—h Sn, Sn—l—l) -
h(sn+1) =

(4a)
(4b)

where h are the discrete multibody constraints accounting for joints as well as orthonormality of the
directors and T is the null space matrix eliminating Lagrange multipliers that result from multibody
constraints [1]. The corresponding linearised version is given as

TT . F, T . K,
( h >+( H )'A8n+120 (5

with Ky = D3F; and the discrete multibody constraint jacobian H = Dh.

~—

Figure 2: Linear coupling constraints between the finite element muscle model and the multibody
system with directors dy, I = 1, 2, 3, rigid body centre of mass ¢, finite element node position
x and coupling location g

The configuration q of the coupled system is given as

a= (") ()

Because a director formulation is used for the multibody system that avoids the occurrence of rotational
degrees of freedom, discrete coupling constraints g(r, s) between the muscle model and a rigid body
are linear functions of the total configuration g (see Figure 2) and the associated discrete constraint
Jacobian

G = (GT Gs) with G, = Dyg(r,s)

7
and G5 = Dag(r,s) Q

is constant in time. Evaluating (1) for the coupled system leads to the integration scheme

F. -GV -\,
T . (Fs—GL - \,)
h
g

~0 (8)



with the linearised form

F, -Gl X\, K., 0 ~GT .
7. (F, - GT-\) o 77 K, -T".GT s
8 -+ s A8n+1 =0 (9)
h 0 H 0 A
g G, G, 0 "

with A, being the Lagrange multipliers of the coupling constraints. Due to the director formulation,
the linearised system’s matrix is independent of the Lagrange multipliers A. The integration scheme
presented in (9) is implemented as C++ code using the library deal.Il. Figure 3 shows possible motions
of different examples.

Figure 3: Numerical examples of a revolute joint (left), a cardan joint (mid) and two serial revolute
joints (right)
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Construction and analysis of higher order variational integrators for dynamical systems
with holonomic constraints

Theresa Wenger, Sina Ober-Blobaum, Sigrid Leyendecker

Variational integrators of higher order for systems with holonomic constraints are constructed and
analyzed. The idea builds up on the variational integrators of higher order for unconstrained systems
in [3] and on the constrained Galerkin methods, that are presented in [2]. The integrators base on
a discrete version of the variational principle of Lagrangian mechanics. Consider an n-dimensional
mechanical system defined on the configuration manifold @ C R" with configuration vector ¢ € Q
and velocity vector ¢(t) € Ty;@Q. The variable ¢ denotes the time in the interval ¢ = [to,tn]. The
Lagrangian L of a mechanical system is the difference of the kinetic energy T and the potential V. In
presence of holonomic constraints g(gq) € R™, the scalar product —g(q) - A augments the Lagrangian,
whereby A € R™ is the Lagrange multiplier. The so called augmented Lagrangian L : TQ x R™ — R
is defined by

L(q,q,\) = L(q,4) — g(q) - A



The approach is, to approximate the continuous curves of the configuration g, the velocity ¢ and the
Lagrange multiplier A on the time interval [0, k| via the polynomials ¢4, ¢; and Ag. The polynomial
qa(t; qr, h), t € [0,h], is uniquely defined by s + 1 configurations gz = (g%, ...,q;) € Q% at s +1
control points 0 = dp < d; < ... <ds_1 < ds =1, such that the polynomial passes through each ¢; at
the time dyh, v = 0,...,s. Analogously, w + 1 Lagrange-multipliers Ay, = (A},...,A¥) € (R™)wF1 at
w 4 1 control points dy =0 < di < ... < dy_1 < dy = 1 uniquely define the polynomial Aa(t; Mg, h),
t € [0, h]. To get continuous approximations of ¢ and A on [to, tx], with [to, tn] = kN:_Ol [kh, (k+1)h],
the conditions ¢ = q2+1, k=0,...,N—2and \}! = >‘k+1? k=0,...,N — 2 must be fulfilled. Note,
that the control points dj;, j = 0,...,s of ¢4 do not have to match the control points dj, j=0,...,w
of A4, neither has the degree w of the polynomial A4 to equal the degree s of g4. The splitting of
the augmented Lagrangian in the two parts Lagrangian and scalar product g(q) - A enables the use of
different quadrature formulas for each part. The discrete Lagrangian L, approximates the integral in
[0, ] of the Lagrangian via the quadrature formula (¢;, b;)i_; of order ordL. g4 is the approximation
of the integral in [0, k] of g(g) - A via the quadrature formula (e;, f;)7_; of order ordZ. The quadrature
formulas are w.r.t. the time [0, 1] with quadrature nodes ¢; respectively f; and the associated weights b;
respectively e;, in particular the Gauss and Lobatto quadrature are used here. S, is the approximation
of the augmented action integral S, i.e. the integral in [tg, ty] of the augmented Lagrangian. Requiring
stationarity of Sy yields the discrete Euler-Lagrange equations. Assume the Lagrangian L is regular
and the order ordL is high enough, such that the discrete Lagrangian flow is well defined. Further
assumptions such that g4 is approximated via the Lobatto quadrature and the w + 1 control points of
Ag match the quadrature nodes f;, 7 =1,...,z, with z=w+1, and s > w, ensure that the number of
unknowns equals the number of linear independent equations in the discrete Euler-Lagrange equations
and yield stiffly accurate integrators. Under these assumptions, the discrete augmented Lagrangian
reads

La(ar, \e) = La(ar) — galar, k) k=0,...,N—1 (1)
with
La(qr) =h > biL(qa(cih; ai), da(cibs gr)) (2)
=1
9a(des M) hZem (9(aadihiay)) - N (3)

The corresponding discrete Euler-Lagrange equations are constrained variational integrators. The
preservation properties of these variational integrators are analysed and verified by numerical examples.
They are symplectic and therefore have a excellent energy long-time behaviour. Furthermore, they
preserve momentum maps proofed via the discrete Noether-theorem for constrained systems extended
to constrained variational integrators of higher order. It is shown, that the constructed variational
integrators are symmetric on configuration level, but not necessarily on momentum level, as the
hidden constraints g—g(q)q = 0 typically fail to be satisfied. The convergence orders of the variational
integrators are investigated numerically. The following remarks are valid only, when s = w or s = w+1
and ordL > 2s. The results for the convergence order of the configuration ¢, briefly named ord(q),
can be summarized as follows. It must be distinguished between calculating L; (2) via the Lobatto
or via the Gauss quadrature. Thus, the orders ordL and ordZ of the quadrature formulas determine

L4 via Gauss quadrature  ord(q) = min(ordL,ordZ) = min(2s, 2r, 2w)
L4 via Lobatto quadrature ord(q) = min(ordL,ordZ) = min(2s,2r — 2, 2w)

as the resulting order of the variational integrator in q. Furthermore, the configuration ¢ is super
convergent of order 2s, when r > s (approximating Lg (2) via the Gauss quadrature) respectively



r > s+ 1 (approximating Ly (2) via the Lobatto quadrature). The order of the Lagrange multiplier
A, ord()), is reduced compared to the order of the configuration gq. The convergence order of the
momentum p, ord(p), is also mostly smaller than that of the configuration ¢q. Note, that the momentum
p is calculated in a post-processing step via the discrete Legendre transform. There is a relation
between the degree w of the polynomial A\; and the convergence orders of the Lagrange multiplier A
and the momentum p recognizable.

w even: ord(p) =w+2 ord(\) =w
w uneven: ord(p) =w+1 ord(\) =w+1

Moreover it is significant, that all orders are even. The constructed variational integrators are shown
to be symmetric in ¢, but not in p and in A. However, the numerical examination reveals even orders
for ¢, p and A. Furthermore, when s is greater than w + 1, order reduction in ¢, p and X occurs. The
limitation of the order ordZ to 2w might be a reason.

The discrete augmented Lagrangian (1) can serve as a generating function for the SPARK integrators
of [1]. However, in [1] the SPARK integrator is applied to a system of index 2 ODAEs. Furthermore,
in contrast to [2] and [1], the restriction r = s for the quadrature nodes for approximating the integral
of the Lagrangian is dropped here as it is in [3] for the unconstrained systems.
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4 Activities

4.1 Teaching
Wintersemester 2015/2016

Biomechanik der Bewegung (MT)
Vorlesung + Ubung

Dynamik starrer Kérper (MB, ME, WING, IP, BPT, CE)

Vorlesung
Ubung + Tutorium

Mehrkérperdynamik (MB, ME, WING, TM, BPT)
Vorlesung
Ubung

Dynamisches Praktikum — Modellierung, Simulation und
Experiment (MB, ME, WING, IP, BPT)

Sommersemester 2015

Biomechanik (MT, MA, GPP)
Vorlesung + Ubung
gepriift 61 + 21 (WS 2014/2015)

Dynamik nichtlinearer Balken (MB, M, Ph, CE, ME, WING)

Vorlesung + Ubung
gepriift 14

Geometrische numerische Integration (MB, ME, WING, BPT)

Vorlesung
Ubung
gepriift 6 + 1 (WS 2014/2015)

Statik und Festigkeitslehre

(CBI, CE, ET, LSE, ME, MWT, 1P, MT, CEN, BPT)
Vorlesung
Ubung + Tutorium

gepriift 497

H. Lang

H. Lang

D. Budday, D. Glaas
T. Leitz, M. Ringkamp
T. Schlogl, T. Wenger

H. Lang
T. Wenger

D. Budday, D. Glaas
T. Leitz, M. Ringkamp
T. Schlogl, T. Wenger

H. Lang

H. Lang, M. Ringkamp

S. Leyendecker
T. Wenger

S. Leyendecker

T. Gail, T. Wenger

D. Budday, T. Schlogl
T. Leitz, M. Ringkamp



Theoretische Dynamik IT
(M, TM, MB, ME, CE, BPT, WING, Ph)
Vorlesung + Ubung
gepriift 12 + 2 (WS 2014/2015)

Rechnerunterstiitzte Produktentwicklung (RPE)
Versuch 6: Mehrkorpersimulation in Simulink
(MB, ME, WING) Praktikum

Teilnehmer 64

Wintersemester 2014 /2015

Biomechanik der Bewegung (MT)
Vorlesung + Ubung
gepriift 35 + 14 (SS 2015)

Dynamik starrer Kérper (MB, ME, WING, IP, BPT, CE)
Vorlesung
Ubung + Tutorium

gepriift 493 + 154 (SS 2015)

Mehrkérperdynamik (MB, ME, WING, TM, BPT, CE)
Vorlesung
Ubung
gepriift 39 + 6 (SS 2015)

Numerische Methoden in der Mechanik
(MB, ME, WING, TM, CE, BPT)
Vorlesung + Ubung
gepriift 40 + 15 (SS 2015)

Theoretische Dynamik I (MB, ME, WING, TM, BPT)
Vorlesung + Ubung
gepriift 22 + 14 (SS 2015)

H. Lang

T. Gail, T. Wenger
T. Leitz, M. Ringkamp
T. Schlogl

H. Lang

S. Leyendecker

D. Budday, O.T. Kosmas
T. Leitz, M. Ringkamp

N. Bach, T. Gail, T. Schlogl

S. Leyendecker
O.T. Kosmas

H. Lang

H. Lang, D. Budday



4.2 Dynamical laboratory — modeling, simulation and experiment

The dynamical laboratory — modeling, simulation and experiment adresses all students of the Technical
Faculty of the FAU Erlangen-Nuremberg. The aim of the practical course is to develop mathematical
models of fundamental dynamical systems to simulate them numerically and the results are compared
to measurements from the real mechanical system. Here, the students learn both the enormous possi-
bilities of computer based modeling and its limitations. The course contains one central programming
experiment and six experiments at the real existing objects, including the corresponding numerical

simulation.

Programming training

Beating pendulums

The experiment beating pendulums is about two heavy pendulums
that are connected with a soft spring. The theory allows a com-
plete analytical solution of the linearised equations of motion. As
an alternative, the solution trajectories might be gained by numer-
ical time integration. The results belonging to three typical initial
conditions are monitored at two coupled pendulums in the labo- .

During the central programming training, the
students learn to deal with MATLAB and
Simulink. Here, prototypically, two exam-
ples are considered, the classical Lagrange
top in MATLAB and a distance controler in
Simulink. The Lagrange top exhibits non
trivial nutation while performing precession
around the vertical direction of gravitational
acceleration.The trajectory of the symmetry
axis might even build loops or cusps.

ratory. Especially, the dynamic beat phenomenon is inspected.

Gyroscope

In the experiment gyroscope, the force-free
and heavy top are investigated. The exper-
imental setup constitutes a multibody system
that is modeled by Lagrangian mechanics and
simulated in MATLAB. In the laboratory, the
motion of the gyroscope is captured via angle
sensors. The measured trajectories are com-
pared to the simulation, which validates the
model.



Ball balancer

The system ball balancer basically consists of a plate on which
a ball is free to roll. Two servomotors may incline the plate.
A camera situated above the plate detects the position of the
ball. The goal is to implement a regulator that controls the
motion of the ball. Preliminarily, the system is modeled. To
that end, the equations of motion of the ball and the differen-
tial equations of the motors are derived. The fundamentals of
control theory are inspected, and a PD-controler is created.
During the experiment, the controler is tested and improved.
Possible reasons for discrepancies between theory and prac-
tice are discussed.

Robot arm

The experiment robot arm serves as an introduction into
multibody dynamics. Here, the frequently used Denavit-
Hartenberg conventions are introduced, which are suit-
able to derive the kinematic equations systematically.
The transformation matrices are used in order to com-
pute the position and orientation of the robot arm for
arbitrary joint angles in space. Experiments with a vir-
tual model in MATLAB and a real robot arm illustrate
the practical use of the methods described.

Inverse pendulum

The experiment inverse pendulum concerns a swing-up- Winkelsensor —
maneuver of a pendulum on a slinging carriage from the
lower (stable) into the upper (unstable) static equilib-
rium position. Especially, the built-in incremental path
sensors are considered, which are explored by an oscil-
loscope. With the aid of MATLAB, a dynamic model
of the machine is solved structure-preservingly and com-
pared to measurements in order to identify an appropri-
ate friction model. A carriage motion that drives the
pendulum into the upper position is obtained by opti-
mal control algorithms. Finally, that motion is tested
on the real system.

Pendel

Servoumrichter

Schlitten



Balancing robot

The experiment illustrates modeling, numerical compu-
tation and reality at the example of a Lego robot that
is self-balancing on two wheels. Preparatively, the stu-
dents are concerned with modeling the robot as a multi-
body system, the derivation of the equations of motion
and the basic knowledge in control theory. Then, they
perform simulations and compare the results to mea-
surements. Thereby, several aspects as the dynamic be-
haviour, stability, robustness, controlling accuracy and
possible sources of error are to be discussed.

4.3 Theses
PhD theses

Michael Koch
Structure preserving simulation of non-smooth dynamics and optimal control

Master theses

Katrin Ederer
Dynamische Simulation der Bewegungen eines biomechanischen Armmodells mit Prothese

Daniel Glaas
Optimal feedback control for constrained mechanical systems

Hannah Laube
Numerische Aufwandsbestimmung verschiedener Formulierungen der Bewegungsgleichung am
Beispiel des ebenen Kirchhoff-Balkens

Uday Phutane
On the comparsion of different muscle model dynamics using varioational integrators

Jochen Uhlig
Polyzentrische Knieprothesen — Kinematische Analyse und Modellierung als Mehrkdrpersystem
mit Zwangsbedingungen

Theresa Wenger

Variationelle Integratoren gemischter Ordnungen fir dynamische Systeme mit gesplitteten Po-
tentialen

Project theses

Markus Eisentraudt
Kreiseldynamik: Theorie, Simulation, Experiment

Johann Penner
Charakterisierung von Reibmodellen zur Simulation eines inversen Pendels

e Dominik Reichl

Zur inversen Dynamik eines Roboterarms unter Finwirkung von Reitbung



Johannes Rudolph
Passive shape undulations in underwater locomotion

Bachelor theses

Theresa Ach
Simulation of a servo constrained rotary crane using variational integrators

Jonas Fertsch
Ezxperimentelle Analyse des NXTway-GS-Roboter

Bjorn Hiibner
Vergleich verschiedener Muskelmodelle

Michael Jager
Modellierung eines keltischen Wackelsteins unter Verwendung verschiedener Parametrisierungen
der Rotationsfreiheitsgrade

Judith Probst
Modellierung und Optimierung der Abrollbewegung eines Mehrkorpersystems

Miriam Scharnagel
Modellbildung und inverse Dynamik eines Roboterarms

Cosima Schellenberger
Viskoelastische Cosserat-Balken aus Kelvin-Voigt-Material zur numerischen Simulation von
Sehnen - Vergleich mit dem 3D-Kontinuum

Anja Thielecke
Numerische Simulation der Dynamik eines Windspiels

4.4 Seminar for mechanics

together with the Chair of Applied Mechanics LTM

02.02.2015 Jaroslav Vondiejc

Faculty of Applied Sciences, University of West Bohemia, Plzen, Czech Rebublic
FFT-based Galerkin method for a reliable determination of homogenized material
properties

19.02.2015 Lukas Allabar

Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Structure preserving simulation of a planar slider crank with translational joint clearance

19.02.2015 Daniel Glaas

Master thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Optimal feedback control for constrained mechanical systems

19.02.2015 Bjorn Hiibner

Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Vergleich verschiedener Muskelmodelle



19.02.2015

19.02.2015

16.03.2015

16.04.2015

16.04.2015

27.04.2015

20.05.2015

15.06.2015

22.06.2015

20.07.2015

27.08.2015

Hannah Laube

Project- und Master thesis, Chair of Applied Dynamics, University of Erlangen-
Nuremberg

Numerische Aufwandsbestimmung verschiedener Formulierungen der Bewegungsgle-
ichung am Beispiel des ebenen Kirchhoff-Balkens

Judith Probst
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Modellierung und Optimierung der Abrollbewegung eines Mehrkrpersystems

Stephan Rudykh
Department of Aerospace Engineering, Technion — Institute of Technology, Israel
Micromechanics of soft dielectric elastomers and magnetorheological elastomers

Miriam Scharnagel
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Modellbildung und inverse Dynamik eines Roboterarms

Jochen Uhlig

Master thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Polyzentrische Knieprothesen — Kinematische Analyse wund Modellierung als
Mehrkorpersystem mit Zwangsbedingungen

Kateryna Plaksiy
Department of Applied Mathematics, NTI, Kharkiv Polytechnic Institute, Ukraine
Dynamics of nonlinear dissipative systems in the vicinity of resonance

Johannes Rudolph
Project thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Passive shape undulations in underwater locomotion

Andrew McBride

Centre for Research in Computational and Applied Mechanics, University of Cape Town,
South Africa

Computational and theoretical aspects of a grain-boundary model that accounts for grain
misorientation and grain-boundary orientation

Valery Levitas

Departments of Aerospace Engineering, lowa State University, USA

Interaction between phase transformations and dislocations at the nanoscale: Phase field
approach

Anja Thielecke
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Numerische Simulation der Dynamik eines Windspiels

Dominik Reichl
Project thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Zur inversen Dynamik eines Roboterarms unter Einwirkung von Reitbung



02.09.2015 Theresa Ach
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Simulation of a servo constrained rotary crane using variational integrators

24.09.2015 Michael Jager
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Modellierung eines keltischen  Wackelsteins unter Verwendung wverschiedener
Parametrisierungen der Rotationsfreiheitsgrade

29.09.2015 Michael Koch
PhD thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Structure preserving simulation of non-smooth dynamics and optimal control

07.10.2015 Johann Penner
Project thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Charakterisierung von Retbmodellen zur Simulation eines inversen Pendels

10.11.2015 Katrin Ederer
Master thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Dynamische Simulation der Bewegungen eines biomechanischen Armmodells mit
Prothese

10.11.2015 Jonas Fertsch
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Experimentelle Analyse des NXTway-GS-Roboter

20.11.2015 Uday Phuthane
Master thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
On the comparison of different muscle model dynamics using variational integrators

30.11.2015 Krishnendu Haldar
Institute of Mechanics, TU Dortmund
Discrete Symmetry and Modeling of Magnetic Shape Memory Alloys

03.12.2015 Markus Eisentraudt
Project thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Kreiseldynamik: Theorie, Simulation, Fxperiment

4.5 Editorial activities

Advisory and editorial board memberships Since January 2014, Sigrid Leyendecker is a member of
the advisory board of the scientific journal Multibody System Dynamics, Springer.



4.6 Long night of science

On October 24, 2015, the ‘Long night of science’ (‘Lange Nacht der Wissenschaften’) took place
at many scientific institutions spread around the cities of Nuremberg, Erlangen, and Fuerth for the
seventh time since 2003. During the early night between 6 p.m. and 1 a.m., interested people had the
opportunity to inform themselves at universities, non-university research institutes, companies and
other institutions about actual topics in research and development. The Chair of Applied Dynamics
participated and showed interesting experiments in its laboratories, such as the beating phenomenon
for pendulums, the conservation of angular momentum, optimal control for an inverted pendulum, a
self-balancing robot and a Carrera race course (the exhibited posters are presented on the following
pages). People had the chance to execute most of the mechanical experiments on their own, e.g. to
feel forces, torques, angular velocity and acceleration experienced on a chair. Some exhibits were well
suited for children such as to try to ‘invert’ a pendulum simply by controlling with a joystick without
the help of numerical control algorithms. The atmosphere was very nice and the resonance extremely
positive, such that the LTD is looking forward to attend the next ‘Long night of science’ in 2017.
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Carrera-Bahn

ein spielerisches Experiment zur Optimalsteuerung

Herausforderungen
Start-Ziel-Gerade
Haarnadel-Kurve
Uberfahrt
Spurwechsel

Steilkurve

Spielregeln

Um Ihr Kénnen an der Carrera-Bahn zu testen, gibt es 2 Méglichkeiten.

1. Fahrer gegen Fahrer

Treten Sie im direkten Duell gegeneinander an und finden Sie heraus, wer durch schnelles Fahren und taktisches
Kénnen die Nase am Ende vorne hat. Nach dem Startsignal gilt es, 2 Minuten lang so viel Strecke wie méglich

zu absolvieren.

o

Kampf gegen die Uhr

Hier gilt es, eine mdglichst schnelle Runde zu absolvieren. Sie kénnen die Bahn frei wahlen und beliebig die
Spur wechseln, am Ende zihlt die beste Runde aus 3 Versuchen. Gewertet wird dabei mit einem fliegendem

Start.

Zu jeder vollen Stunde gibt es fiir den Fahrer der Stundenbestzeit einen kleinen Preis.

aktuelle Stundenbestzeit

Forschungsaspekte

Mithilfe  der Carrera-Bahn  wird das Zusammenspiel einiger
Forschungsaspekte des Lehrstuhls anhand eines praktischen Beispiels
getestst.

Optimalsteuerung

Ausgehend von einer umfassenden Beschreibung der Fahrdynamik
eines Carrera-Autos und des eindimensionalen Steuersignals (Han-
dregler) wird in einer Simulation eine optimale Bewegung und
Steuerung berechnet.

Dies entspricht dem Herantasten des Menschens an eine moglichst
schnelle Rundenzeit durch mehrmaliges Probieren.

Positionserkennung

Fiir die Interaktion in Echtzeit mit dem System ist es vor allem
notwendig, eine genau Kenntniss {iber den aktuellen Ort und die
Geschwindigkeit des Wagens zu haben. Dies geschieht mittels einer
Kamera, die zentral iiber der Bahn montiert wird.

Regelung

Weicht der aktuelle Zustand des Wagens von der optimalen Bewe-
gung ab, so wird der Wagen durch Regelungsalgorithmen an seine
optimale Fahrt angendhert.
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Drehimpulserhaltung und Lagrange-Kreisel

Drehimpulserhaltung

Drehimpulserhaltung ist zundchst unintuitiv. Man kann sie in
Drehstuhlexperimenten am eigenen Leib erfahren.

1. Man rotiert mit der Winkelgeschwindigkeit
w

auf dem Drehstuhl mit weit ausgebreiteten Armen und
schweren Hanteln in den Handen. Die vertikale Kompo-
nente des Drehimpulses

L. = konstant

bleibt erhalten, wenn man die Arme zu sich heranzieht.
Damit wird das Tragheitsmoment ©, um die vertikale
Drehachse kleiner. Folglich muss wegen

L. = ©,w = konstant

die Rotationsgeschwindigkeit w zunehmen.

2. Halt man das rotierende Rad vertikal, so ist die vertikale
Komponente des Gesamtdrehimpulses exakt Null. Dies
muss auch so bleiben, wenn man das Rad in die hor-
izontale Position bewegt. Da nun das Rad mit seiner
positiven Vertikalkomponente zum Gesamtdrehimpuls
beitragt, muss sich der Drehstuhl in entgegengesetz-
ter Richtung drehen, damit die Vertikalkomponente des
Gesamtdrehimpulses weiterhin Null ist.

3. In der ruhenden Position ist der gesamte Drehimpuls L
gleich Null. Bewegt man den schweren Hammer nach
rechts bzw. nach links, so muss der Drehstuhl sich nach
links bzw. nach rechts drehen, damit weiterhin in Summe
L =0 gil.

Lagrange-Kreisel

Nutation und Prazession

Der Massenmittelpunkt der Scheibe beschreibt, je nach Anfangs-
bedingungen, die in (a), (b), (c) und (d) dargestellten Figuren-
achsen. Die Bewegung um die vertikale Achse wird Prazession
(Fortschreiten) und die Auf- und Abbewegung wird Nutation
(Nicken) genannt.

Drehimpulserhaltung

Die oben beschriebene Drehimpulserhaltung ist der Grund dafiir,
dass der Lagrange-Kreisel das bekannte Bewegungsmuster aus
Nutation und Prézession aufweist.

Die vertikale Komponente des Gesamtdrehimpulses ist erhalten

L, = konstant

Bewegt sich die Kreiselscheibe nun aufgrund der Gewichtskraft
um den Winkel ¢ nach unten, so dndert sich die Drehung des
Gesamtsystems, um den nun vorhandenen vertikalen Anteil des
Drehimpulses der Kreiselscheibe L° auszugleichen.

Trajektorie der Figurenachse

W W

Quelle: ‘MehrkSrpersysteme: Eine Einfithrung in die Kinematik und Dynamik von Systemen starrer Kérper' — Christof Woernle

L. = konstant

%l

~J
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Balancierender Lego Roboter auf zwei Radern

Problemstellung

Die Abbildung auf der rechten Seite zeigt einen Lego Roboter, der auf
2zwei Ridern balancieren soll. Die aufrechte Position des Roboters ist
zwar eine Gleichgewichtslage, sie ist jedoch instabil. Um den Roboter
in der aufrechten Lage zu stabilisieren, bendtigt man eine Regelung,
welche die Motoren so steuert, dass der Roboter die Kippbewegungen
ausgleicht. Zu diesem Zweck wird der Roboter als Mehrkérpersys-
tem modelliert. Anhand der linearisierten Bewegungsgleichungen wird
dann ein Regler entworfen, der den Roboter auch bei Einfluss von
Stérungen aufrecht hilt.

Modellierung

Der Roboter wird als starres Mehrkdrpermodell betrachtet, mit zwei
Radern und einem quaderférmigen Oberkérper. Mit Hilfe des Varia-
tionsprinzips werden die Bewegungsgleichungen hergeleitet und an-
schlieBend um die instabile Gleichgewichtslage linearisiert. Zusitz-
lich geht man von kleinen Kipp- und Rotationsgeschwindigkeiten des
Roboters aus. Der Roboter besitzt drei Freiheitsgrade: die Rota-
tion des linken und des rechten Rads, sowie die Verkippung des
Oberkérpers. Damit ergeben sich drei teilweise gekoppelte Bewegungs-

gleichungen.
Starrkérpermodell
w
; ’
H

o, ‘/R

Bewegungsgleichungen und Linearisierung

doL oL _ o
diog o0’

((2m + M)R? + 2,y + 20 Jnior) 0 + (MLR — 2n* Jygor )b = Fy
dJL dL

L= = F,
dto) o

(MLR — 2n* Jnio)0 + (ML? + Jy + 20*Jnion) ) — MgLtp

ddL IL

Al Pa  te

dtog 06

w2

1 -2
<§mw +Jp+ b

(Juo + 72 nto >) 6=F,

Feder-Dampfer Ersatzmodell fiir PID Regler

2

Zm

Gyrosensor

\

rechter Motor

/V

NXT-Brick Abstandssensor

rechter
Rotationssensor

linker Motor
linker
Rotationssensor

Versuche und Beobachtungen

Lassen Sie den Roboter auf der Stelle
balancieren. Wie verhalten sich die Simu-
lation und der Roboter im Vergleich?

Wie ist das Verhalten des Roboters
gegeniiber Storungen von auRen (leichte
StéRe)?

Lassen Sie den Roboter auf der Holzplatte
balancieren. Was ist bei einer Neigung der
Holzplatte zu beobachten?

Versuchen Sie mit Hilfe der Computer-
steuerung, den Parcours abzufahren. Aus
welchen Griinden weicht die errechnete von
der tatsichlichen Bahn ab?

Regelkreis o

Strocke

Zustandsreglor
{PD-Verhalien) ps

nnhm_‘

Fi-eger
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Schwebung
Beispiel zweier schwebender Pendel

Schwebung

Die Schwebung tritt bei Uberlagerung von zwei Schwingungen mit nahe beieinander liegenden
Kreisfrequenzen auf.

Sie fiihrt zu periodischen Ausléschungen und Verstirkungen der Schwingungsamplitude.

physikalisches Pendel durch Feder gekoppelte Pendel
ein Freiheitsgrad zwei Freiheitsgrade

Bewegungsdifferentialgleichung Bewegungsdifferentialgleichungen

+wpp=0 @+ ) +wi(o+4) =0
Schwingung mit (0—U)+wip—v)=0

Kreisfrequenz wy Schwingung mit Kreisfrequen-

zen wp und wy

w1 = /w4 Dpeder

Gleichtakt

. Anfangslage — beide Pendel um den gleichen
Winkel ausgelenkt

o

keine Kraft in Koppelfeder

Schwingung beider Pendel mit
Kreisfrequenz wy

Gegentakt
Anfangslage — beide Pendel entgegengesetzt
um den gleichen Winkel ausgelenkt
maximale Kraft in Koppelfeder

Schwingung beider Pendel mit
Kreisfrequenz wy

Schwebung

Anfangslage — nur ein Pendel ausgelenkt
Kraft in Koppelfeder

Uberlagerung der beiden Schwingungen mit
Kreisfrequenzen wy und w;

jedes Pendel kommt immer wieder kurz zum
Stillstand
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Inverses Pendel — Mensch gegen Maschine

Schwingen Sie das Pendel mit dem
Joystick auf!

Das Pendel hat (theoretisch) zwei Ruhelagen. Wihrend
es aufgrund der Schwerkraft von alleine nach unten hingt,
ist die obere Gleichgewichtslage instabil. Ohne weiteren
Eingriff fiihren kleinste Stérungen dazu, dass es wieder nach
unten fallt. Wie kann man das Pendel oben halten? Und
wie bekommt man es iiberhaut nach oben? Von Hand ist
das sehr schwierig.

unteraktuierte Systeme

Warum ist es so schwer, das Pendel von Hand aufzuschwin-
gen? Die relevante Bewegung, also die Drehung des Pen-
dels, lasst sich nicht direkt beeinflussen. Das Pendel wird
indirekt, durch die Bewegung des Schlittens, in Schwingung
versetzt. Man spricht von einem unteraktuierten System.

-

Winke\sen's?)r Pendel

Servoumrichter

\

///

e

///
Schlitten

Computermodell zur Beschreibung der schnellen Pendeldynamik

Um mit dem Computer zu berechnen, wie sich der Schlitten bewegen muss, damit das Pendel aufschwingt,
braucht man ein moglichst genaues mathematisches Modell der Anlage. Eine Herausforderung liegt darin, die
komplexen Reibphdnomene zu beschreiben, welche bei der Bewegung des Pendels auftreten. Methoden der
Optimalsteuerung liefern dann die benétigte Schlittenbewegung, um das Pendel in die obere, instabile Ruhelage

zu fiithren — so die Theorie.

in der Theorie ist die Praxis ideal

Modelle sind immer Idealisierungen komplexer Vorgange
in der Wirklichkeit. Kein mathematisches Modell wird
die Anlage perfekt beschreiben. Lagerungen verschleiRen,
Eigenschaften von Schmiermitteln sind temperaturab-
hdngig, Fertigungstoleranzen sind unvermeidbar. Dazu
kommen unvorhergesehene Stérungen, wie Erschiitterun-
gen des Bodens oder ein WindstoR. Ob das noch was wird
mit dem Aufschwingen?

Kaskadenregelung

Fiir den Versuch wurde eine Kaskadenregelung verwendet.
Dabei handelt es sich um eine Verschachtelung mehrerer
Regelkreise. Ein innerer Regelkreis reagiert sehr schnell
und halt das Pendel in der oberen Ruhelage, ohne dabei die
aktuelle Schlittenposition zu beriicksichtigen. Ein etwas
langsamerer duRerer Regelkreis fiihrt den Schlitten wieder
zur Mitte zuriick. So kann das System auf neue Stérungen
reagieren, ohne dass der Schlitten seinem Endanschlag zu
nahe kommt.

Modell des Pendels auf dem Schlitten

7

Mg

1.m, 0%

Steuerung und Regelung

Woihrend die reine Steuerung des Systems unbeeindruckt duRerer
Einfliisse ihren Dienst verrichtet, reagiert die Regelung auf externe
Storungen. Treten bei der Steuerung Abweichungen zwischen Ist-
und Soll-Zustand auf, greift die Regelung ein und stabilisiert die
Lage. In diesem Fall hilt die Regelung das Pendel in der oberen
Ruhelage, nachdem es die Optimalsteuerung in deren Nihe ge-
bracht hat. Ob das jemand mit dem Joystick geschafft hitte?

ﬁdl

~J



5 Publications

5.1 Reviewed journal publications

1.

D. Budday, S. Leyendecker, and H. van den Bedem. Geometric analysis characterizes molecular
rigidity in generic and non-generic protein configurations. Journal of the Mechanics and Physics
of Solids, Vol. 83, pp. 736-47, 2015.

. F. Demoures, F. Gay-Balmaz, S. Leyendecker, S. Ober-Blobaum, T.S. Ratiu, and Y. Weinand.

Discrete variational Lie group formulation of geometrically exact beam dynamics. Numerische
Mathematik, Vol. 130, pp. 73-123, 2015.

T. Schlogl, and S. Leyendecker. FElectrostatic-viscoelastic finite element model of dielectric actu-
ators. Comput. Methods Appl. Mech. Engrg., accepted for publication, 2015.

5.2 Reviewed proceeding publications

1.

T. Gail, R. Hoffmann, M. Miezal, G. Bleser, and S. Leyendecker. Towards bridging the gap
between motion capturing and biomechanical optimal control simulations’. In Proceedings of the
ECCOMAS Thematic Conference on Multibody Dynamics, 12 pages, Barcelona, Spain, 29 June
- 2 July 2015.

M.W. Koch and S. Leyendecker. Structure preserving optimal control of a 3d-dimensional upright
gait. In Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, 12 pages,
Barcelona, Spain, 29 June - 2 July 2015.

T. Gail, R. Hoffmann, M. Miezal, G. Bleser, and S. Leyendecker. Towards bridging the gap
between motion capturing and biomechanical optimal control simulations. In Proceedings of the
ECCOMAS Thematic Conference on Multibody Dynamics, 12 pages, Barcelona, Spain, 29 June
- 2 July 2015.

H. Lang, H. Laube, and S. Leyendecker. Various multibody dynamic models for the description
of plane Kirchhoff rods. Proceedings of the ECCOMAS Thematic Conference on Multibody
Dynamics, 12 pages, Barcelona, Spain, 29 June - 2 July 2015.

5.3 Talks

1.

S. Leyendecker. A discrete variational approach to hybrid dynamical systems and optimal control.
Invited lecture, Institut fiir Robotik, Johannes Kepler Universitt Linz, Linz, Austria, 11 February
2015.

. S. Leyendecker. A discrete variational approach to hybrid dynamical systems and optimal control.

Invited lecture, Department of Aerospace and Mechanical Engineering, University of Southern
California, Los Angeles, California, 12 March 2015.

S. Leyendecker. A discrete variational approach to hybrid dynamical systems and optimal control.
Invited lecture, Mechanics and Computation, Stanford University, Palo Alto, California, 19
March 2015.

D. Budday, S. Leyendecker, and H.van den Bedem. A geometric approach to characterize rigidity
in proteins. PAMM, Vol. 15, pp. 89-90, GAMM Annual Meeting, Lecce, Italy, 23-27 March 2015.



10.

11.

12.

13.

14.

M. Ringkamp, S. Ober-Blobaum, and S. Leyendecker. Relaxing mized integer optimal control
problems using a time transformation’. PAMM, Vol. 15, pp. 27-30, GAMM Annual Meeting,
Lecce, Italy, 23-27 March 2015.

T. Schlogl, and S. Leyendecker. On electrostatic-viscoelastic simulation of dielectric actuators .
PAMM, Vol. 15, pp. 421-422, GAMM Annual Meeting, Lecce, Italy, 23-27 March 2015.

S. Leyendecker, M. Koch, M. Ringkamp, and S. Ober-Blébaum. Structure preserving simu-
lation of hybrid dynamical systems and optimal control. 3rd German-Japanese Workshop on
Computational Mechanics, Munich, Germany, 30-31 March 2015.

T. Schlogl, and S. Leyendecker. Modelling and simulation of dielectric elastomer actuated multi-
body systems. EuroEAP, Poster, Tallinn, Estonia, 9-10 June, 2015.

D. Budday, S. Leyendecker, and H. van den Bedem. A geometric approach to characterize rigidity
of biomolecules. EMI Conference, Stanford University, California, USA, 16-19 June 2015.

D. Budday, S. Leyendecker, and H. van den Bedem. Protein conformational analysis using kino-
geometric constraints. Invited lecture, Fraser Lab at UCSF, San Francisco, California, USA, 22
June 2015.

H. Lang, H. Laube, and S. Leyendecker. Various multibody dynamic models for the description
of plane Kirchhoff rods. ECCOMAS Thematic Conference on Multibody Dynamics, Barceona,
Spain, 29 June - 2 July 2015.

M. Ringkamp, S. Ober-Blobaum, and S. Leyendecker. Relaxing mixed integer optimal control
problems using a time transformation. ECCOMAS Thematic Conference on Multibody Dynam-
ics, Barceona, Spain, 29 June - 2 July 2015.

T. Gail, S. Leyendecker, and S. Ober-Blobaum. A numerical convergence study for constrained
variational multirate integration. 3rd ECCOMAS Young Investigators Conference, Aachen, Ger-
many, 20-23 July 2015.

S. Leyendecker.  On the simulation and control of micro- and macroscopic motion in
(electro- )mechanical systems. Invited lecture, 7th EAM Symposium, Cluster of Excellence —
Engineering of Advanced Materials, Bad Staffelstein, Germany, 23-25 November 2015.



6 Social events

Visit of the Bergkirchweih 26.05.2015

Student summer party 07.07.2015



6 Social events

On the Wiesent 28.08.2015

Chair of Applied Dynamics, Annual Report 2015
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PhD defense Michael Koch 29.09.2015

Nikolaus hike 04.12.2015



Christmas party together with LTM 10.12.2015



