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1 Preface

1 Preface

This report summarises the activities in research and teaching of the Chair of Applied Dynamics
at the University of Erlangen-Nuremberg between January and December 2015. Part of LTD is the
Independent Junior Research Group in the DFG Emmy Noether Programme ‘Simulation and optimal
control of the dynamics of multibody systems in biomechanics and robotics’ that has been at the
University of Kaiserslautern from May 2009 to March 2011.

The main direction of research is computational dynamics and optimal control. Efficient technologies
for dynamical and optimal control simulations are developed, facing contemporary life science
and engineering problems. The problems under investigation come from biomechanics (natural or
impaired human movements and athletic’s high performance) and robot dynamics (industrial, spatial
and medical) as well as the optimisation and optimal control of their dynamics. Further topics are the
modelling and simulation of biological and artificial muscles (as electromechanically coupled problems),
multiscale and multirate systems with dynamics on various time scales (examples in astrodynamics as
well as on atomistic level), higher order variational integrators, Lie group methods and viscous beam
formulations as well as research on structural rigidity and conformational analysis of macromolecules.
The development of numerical methods is likewise important as the modelling of the nonlinear
systems, whereby the formulation of variational principles plays an important role on the levels
of dynamic modeling, optimal control as well as numerical approximation, yielding a holistic approach.
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2 Team

2 Team

chair holder
Prof. Dr.-Ing. habil. Sigrid Leyendecker

technical staff
Beate Hegen
Dipl.-Ing. (FH) Natalia Kondratieva
Sven Lässig

academic scientist
Dr. rer. nat. Holger Lang

postdoc
Dr. Odysseas T. Kosmas until 31.03.2015
Dr.-Ing. Ramona Hoffmann since 01.08.2015

scientific staff
M.Sc. Dominik Budday
M.Sc. Daniel Glaas since 01.04.2015
Dipl.-Ing. Tobias Gail
Dipl.-Ing. Thomas Leitz
Dipl.-Math. Maik Ringkamp
Dipl.-Ing. Tristan Schlögl
M.Sc. Theresa Wenger since 01.04.2015

students
Dominik Bartels Tim Bassing
Larissa Bugert Lewin Buttazzo
Emre Cicek David Elz
Roman Enser Sebastian Falk
Christian Feuerer Michele Gleser
Habuer Guerloss Johannes Henneberg
Alexander Hetzner Johanna Hilsen
Michael Jäger Dominik Kalb
Johannes Koch Julius Kohnert
Johann Penner Roland Purucker
Dominik Reichl Uta Rösel
Judith Saffer Sebastian Scheiterer
Selina Scherzer Marie-Louise Schlichting
Christian Seifert Canet Serin
Artur Usbek Thomas Will
Pascal Zobel

Student assistants are mainly active as tutors for young students in basic and advanced lectures at
the Bachelor and Master level. Their indispensable contribution to high quality teaching at the is
invaluable, thus financial support from various funding sources is gratefully acknowledged.
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3 Research

3 Research

3.1 Emmy Noether Independent Junior Research Group

The Emmy Noether Programme by the German Research Foundation (DFG) supports young re-
searchers in achieving independence at an early stage of their scientific careers. Between May 2009
and March 2011, the Emmy Noether Independent Junior Research Group ‘Simulation and optimal
control of the dynamics of multibody systems in biomechanics and robotics’ has been affiliated with the
University of Kaiserslautern. The group has been transferred to the University of Erlangen-Nuremberg
in April 2011 being now part of the Chair of Applied Dynamics.

3.2 Bionicum

The Bavarian Environment Agency (LfU) (being the central authority for environmental protection
and nature conservation, geology and water resources management) has established the centre for
bionics ‘bionicum’ in 2012, consisting of a visitors centre in the Tiergarten of the City of Nuremberg
with a permanent exhibition and three research projects with a total financial volume of eight million
Euro. One of the projects investigates artificial muscles. The modelling and simulation of the dielectric
elastomer actors is developed at the LTD while the Institute for Factory Automation and Production
Systems (FAPS) works on the fabrication.

3.3 BaCaTeC

The Bavaria California Technology Center at the University of Erlangen-Nuremberg supports newly
initiated cooperations between researchers from Bavaria and California. Between July 2014 and De-
cember 2015, BaCaTeC sponsored the LTD for the established collaboration with the Stanford Syn-
chrotron Radiation Lightsource (SSRL) on ‘Inferring rigid substructures in proteins from X-ray data
using the null space topology’. The project ended successfully, with two scientific publications this year
in the Journal of the Mechanics and Physics of Solids and the Proceedings in Applied Mathematics
and Mechanics.

3.4 GAMM and GACM

Sigrid Leyendecker has been elected as an Executive Council Members of the German Association for
Computational Mechanics (GACM) for the period of January 2013 to December 2016. The objective
of GACM is to stimulate and promote education, research and practice in computational mechanics
and computational methods in applied sciences, to foster the interchange of ideas among various fields
contributing to computational mechanics, and to provide forums and meetings for the dissemination
of knowledge about computational mechanics in Germany.
In February 2014, she has further been elected as a member of the Managing Board of the Interna-
tional Association of Applied Mathematics and Mechanics (GAMM) for two years. GAMM promotes
scientific development in all areas of applied mathematics and mechanics, e.g. via the organisation of
workshops, in particular for younger scientists, and the international scientific annual GAMM meeting.

3.5 Cooperation partners

Besides numerous worldwide cooperations with scientists in academia, the LTD is in contact with other
institutions and industrial partners. The LTD cooperates with the Fraunhofer Institute for Industrial
and Economical Mathematics (ITWM) in Kaiserslautern on common interests like biomechanics and
nonlinear rod dynamics for wind turbine rotor blades. A cooperation with the AG wearHEALTH
and AG Augmented Vision, Department Computer Science, TU Kaiserslautern and German Research
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3 Research

Center for Artificial Intelligence (DFKI), aims at bridging the gap between motion capturing and
biomechanical optimal control simulations. In collaboration with the Stanford Synchrotron Radiation
Lightsource (SSRL), the LTD does research on structural rigidity and conformational analysis of
biomolecules.

3.6 Scientific reports

The following pages present a short overview on ongoing research projects pursued at the Chair of
Applied Dynamics. These are partly financed by third-party funding (German Research Foundation
(DFG), Bavarian Environment Agency (LfU)) and in addition by the core support of the university.

Research topics

Complex frequency response for linear beams with Kelvin-Voigt viscoelastic material
Holger Lang, Sigrid Leyendecker

Modelling protein conformational transitions with clash- and constraint-guided motion planning
Dominik Budday, Sigrid Leyendecker, Henry van den Bedem

Numerical convergence study for variational multi rate integrators
Tobias Gail, Sina Ober-Blöbaum, Sigrid Leyendecker

Optimal feedback control for constrained mechanical systems
Daniel Glaas, Sigrid Leyendecker

Towards bridging the gap between motion capturing and biomechanical optimal control simulations
Ramona Hoffmann, Tobias Gail, Bertram Taetz, Markus Miezal, Gabriele Bleser, Sigrid Leyendecker

Multisymplectic variational integrators for PDEs of geometrically exact beam dynamics using algo-
rithmic differentiation
Thomas Leitz, Sigrid Leyendecker

Time transformed mixed integer optimal control problems with impacts
Maik Ringkamp, Sina Ober-Blöbaum, Sigrid Leyendecker

Dielectric elastomer actuated multibody systems
Tristan Schlögl, Sigrid Leyendecker

Construction and analysis of higher order variational integrators for dynamical systems with holo-
nomic constraints
Theresa Wenger, Sina Ober-Blöbaum, Sigrid Leyendecker
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3 Research

Complex frequency response for linear beams with Kelvin-Voigt viscoelastic material

Holger Lang, Sigrid Leyendecker

We inspect the complex frequency response for linear homogeneous and uniform beams with Kelvin-
Voigt viscoelastic material [2, 4]. The dynamic motion of such a beam is described by the real
displacement function u(x, t) satisfying the partial differential equation

%A
∂2u

∂t2
=

∂

∂x

(
EA

∂u

∂x
+ ηA

∂2u

∂t∂x

)
+ n where 0 ≤ x ≤ L 0 ≤ t <∞ (1)

denote the undeformed arclength parameter of the centreline and the time, respectively. Further,
L > 0 is the total length of the beam and A > 0 is its cross section area. Thereby, E > 0 denotes the
extensional (i.e. Young’s) modulus, η ≥ 0 the extensional viscosity of the material [3, 4], where % > 0
is the mass volume density. The function n = n(x, t) is a prescribed exterior axial force line density
acting along the rod. For η = 0, the well-known equation of motion for a purely elastic (i.e. Hookean)
axial beam is rediscovered [1, 5]. We rescale the involved magnitudes in (1) according to

U(ξ, τ) =
1
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Then, equation (1) becomes free of any physical dimension and reads

Ü = U ′′ + 2ζU̇ ′′ +N where 0 ≤ ξ ≤ 1 0 ≤ τ <∞ (2)

Here ˙(·) = ∂(·)/∂τ and (·)′ = ∂(·)/∂ξ. The only remaining independent model parameter is the
viscosity ζ ≥ 0.
As an example, we consider the ‘cantilever’ or ‘clamped-free’ problem with boundary conditions
U(0, τ) = U ′(1, τ) ≡ 0. We assume that N(ξ, τ) ≡ 0. It is straightforward to see that real eigen-
solutions of (2) take the form

Uk(ξ, τ) = e−Ω2
kζτ sin(Ωkξ)
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2 τ
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+Bk exp
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(3)

for k = 0, 1, 2, . . .. Here, the numbers

Ωk =
(
k +

1

2

)
π resp. ζ?k =

1

Ωk
(4)

denote the k-th natural undamped eigenfrequency of the beam resp. the critical viscosity of the k-th
eigenmode as defined in [2]. Note that by construction, they do not carry any physical dimension.
Note that – coincidentally – Ωk represents the k-th wave number of the beam [1, 5]. We define the
total critical viscosity by

ζ? = ζ?0 .

For the boundary conditions under consideration, we have ζ? = 2/π.

The plots in Figures 1 and 2 display the displacement U(1, τ) and the strain U ′(0, τ) of the transient
analytic displacement solution U(ξ, τ) of (2) under the initial conditions U(ξ, 0) = ξ, U̇(ξ, 0) ≡ 0 in
the case of free vibrations. U(ξ, τ) can be expressed as linear superposition of the contributions in (3)
with appropriate integration constants Ak and Bk, uniquely determined by the initial conditions. The
contribution Uk(ξ, τ) is oscillatory for each k satisfying ζ < ζk, but purely viscous for each k satisfying
ζ ≥ ζk.
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Figure 1: Transient displacement solution U(1, τ) for free vibrations in the time domain

• For ζ = 0 (grey), the first undamped eigenfrequency is given by Ω0 = π/2. This corresponds to
the oscillating period of precisely 2π/Ω0 = 4 in τ -time.

• Slight damping for ζ = 0.01ζ? (green), corresponding to ζ = 0.01ζ?0 = 0.03ζ?1 = 0.05ζ?2 = . . ., or
even ζ = 0.1ζ? (orange), corresponding to ζ = 0.1ζ?0 = 0.3ζ?1 = 0.5ζ?2 = . . ., damps out all higher
frequent contributions.

• For ζ = ζ? (red), mode 0 is damped out critically. Modes 1, 2, . . . are overdamped.

• For even larger damping, ζ > ζ? (brown), there is purely viscous creep.

The plot in Figure 3 displays the real amplitude (i.e. norm) ‖UΩ(1)‖ of the complex frequency response
function UΩ(ξ) at ξ = 1, the function U(ξ, τ) = UΩ(ξ)eiΩτ being the node displacement response under
exterior forced harmonic excitation U ′(1, τ) = eiΩτ at the rod’s free right end ξ = 1 under clamped
boundary conditions U(0, τ) ≡ 0 at the rod’s left end ξ = 0.

• For ζ = 0 (grey), each Ω = Ωk according to (4) produces a pole (yielding a resonance catastro-
phe). Arbitrary high frequencies may be excited, cf. [1, 5].

• Very slight damping ζ = 0.001ζ? (blue) regularises these singularities, as expected. Thus,
resonances become finite.

• Slight damping, e.g. for ζ = 0.01ζ? (green) resp. ζ = 0.1ζ? (orange), damps out all vibrations
with frequencies larger than Ω6 resp. Ω1. The lowest peak at Ω / Ω0 = π/2 contributes to the
well recognisable smallest frequency in the transient solutions on the left.
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Figure 2: Transient strain solution U ′(0, τ) for free vibrations in the time domain

• For ζ ≥ ζ?, no vibrations are possible any more. (ζ = ζ? is in fact the smallest viscosity for
which all oscillations are absorbed.)

Independent of the value of ζ, each amplitude curve ‖UΩ(1)‖ converges to unity for Ω = 0, which
comprises the important special case of statics. At Ω = 0, the function ‖UΩ(1)‖ possesses vanishing
slope, if ζ ≤ ζ?.
The results in Figures 2 and 3 are obtained numerically by the use of the finite element method with a
sufficiently large number of 400 linear elements [6]. After semi-discretisation, the transient analytical
solutions, depicted at the left, are gained by the time integration methods Ode45 (for ζ = 0) and
Ode15s (for ζ > 0) in Matlab [7]. It can be shown that in the context of finite dimensional linear
dynamic structures [1, 5], Kelvin-Voigt viscoelasticity for linear beams leads to structural damping, if
the material and geometry data are homogeneously distributed.
Further discussion, analytical aspects and the treatment of linear torsional and bending beams of
Euler-Bernoulli kind with Kelvin-Voigt material are part of further investigation and research.
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Figure 3: Amplitude solution ‖UΩ(1)‖ for harmonic forced excitation in the frequency domain
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Modelling protein conformational transitions with clash- and constraint-guided motion
planning

Dominik Budday, Sigrid Leyendecker, Henry van den Bedem

Proteins exist as interconverting conformational ensembles, exchanging between substates to perform
their function. Advances in experimental techniques give us unprecedented access to structural snap-
shots of their conformational landscape. However, computationally modeling how proteins use collec-
tive motions to transition between substates is challenging owing to conflictive objectives: distance
minimization, clash prevention, and maintaining a folded, authentic state. We developed a robotics-
inspired motion planning procedure to connect two substates that overcomes the rugged landscape by
introducing dynamic, interatomic constraints. This algorithm is based on our molecular framework
[1, 2] that describes proteins as kinematic linkages. We enforce clash-preventing, holonomic constraints
for pairs of atoms whenever their distance falls below a predefined threshold, which balances clashes
and flexibility.

Figure 1: A protein’s flexibility is highly constrained by hydrogen bonds (shown in pink) and steric
clashes (shown as spheres) (left). The constraint Jacobian matrix reveals in a column which
cycles restrain a degree of freedom and in a row which degrees of freedom are part of an
individual cycle. This nesting of cycles propagates collective motion. A new cycle, i.e. an
additional row, expands the network (middle). Geometry of two clashing atoms at contact
(right)

Our molecular framework represents proteins as kinematic spanning trees, with groups of atoms as rigid
body vertices and covalent, rotatable bonds as links or edges with a torsional degree of freedom [1, 2].
Non-covalent hydrogen bonds are encoded as pentavalent holonomic constraints Φ(q) = 0 ∈ R5m

that only allow a rotation about their bond axis, which lead to m nested, interdependent cycles that
require coordinated changes of the d torsional angles q ∈ Rd in the molecule. Admissible velocities q̇
lie in the nullspace of the constraint Jacobian matrix J , i.e. Jq̇ = 0. The nullspace basis N relates
independent velocities u̇ to admissible velocities via q̇ = Nu̇, which allows us to identify rigidified
dihedral angles and hydrogen bonds [1, 2]. In this spirit, a nullspace projection ∆q = NNTδq of a
trial vector δq provides access to efficiently sample conformation space while maintaining constraints
in linear approximation. Using a seed conformation, we obtain a new sample via qnew = qseed+∆q. To
account for multi-chain proteins and complexes, we link the spanning trees of individual chains by an
additional covalent bond taken from the set of inter-chain hydrogen bonds. In addition to hydrogen
bonds, clashes restrain a protein’s flexibility (Figure 1 (left)). Figure 1 (right) shows the contact
conformation of two atoms centered at p1 and p2. The unit normal vector at contact is nc = p2−p1

|p2−p1| ,
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tangent vectors are denoted by tc. We define the clash distance d̄ as the sum of their van der Waals
radii d̄ = cf (r1 +r2), with a scaling parameter cf . If a small perturbation ∆q results in a conformation
with |p2 − p1| < d̄, the sample is discarded and, instead, a new constraint

nTc

(
∂p2

∂q
− ∂p1

∂q

)
q̇ = 0 (1)

is formed. This equality constraint maintains the distance along nc and only allows a joint move in
nc direction, or individual moves in tc direction, letting the atoms slide past each other. A basis for
the new nullspace is given by Ncp ∈ Rd×(d−r′), with r′ the rank of the resulting Jacobian.
We incorporate a bidirectional rapidly exploring random tree [3] to identify possible transition path-
ways in proteins. This motion planning strategy simultaneously expands a forward and a reverse tree
from the initial conformation qinit and target conformation qtarget to find a connecting path. We in-
tegrate our Dynamic Clash Avoiding Constraint (DyCAC) strategy to iterate along clash boundaries
to overcome barriers in conformation space and identify new, clash-free conformations.
We generate an entirely random conformation and expand the forward tree towards the random
conformation using the node qseed closest in heavy-atom RMSD in the tree. To direct the search
towards the final conformation, we introduce a bias at which an actual target is selected at random
from the opposing tree with a frequency of 60%. An admissible velocity is obtained by calculating
a mean squared distance (MSD) gradient δq with respect to atom positions towards the target and
projecting the gradient. If a trial move δq leeds to a clash-free sample qnew, we append a new node
and edge to the forward tree. Following the ’CONNECT’ strategy [3], we use the new sample as seed
for the next iteration and proceed further to the same target. If δq leads to clashes, we add constraints
(1) to the clashing atoms. We re-apply δq a specified number of times, using the clash-free projection
equation NcpN

T
cpδq, until a clash-free sample is obtained. The new constraints are released at this

stage. If our search is unable to advance, i.e. we cannot find a new clash-free sample, we swap trees and
propagate in the other direction. After the swap, a new target conformation and the closest existing
node on the forward tree are computed. The procedure ends when the distance between the trees falls
below a threshold or when we reach a specified number of samples. We restart the algorithm every
1000 samples using the two closest nodes in heavy-atom RMSD on the forward and reverse tree.
If δq leads to clashes, we add constraints (1) to the clashing atoms. We re-apply δq a specified number
of times, using the clash-free projection equation NcpN

T
cpδq, until a clash-free sample is obtained.

If our search is unable to advance, i.e. we cannot find a new clash-free sample, we swap trees and
propagate in the other direction. The procedure ends when the distance between the trees falls below
a threshold or when we reach a specified number of samples. We restart the algorithm every 1000
samples using the two closest nodes in heavy-atom root mean square distance (RMSD) on the forward
and reverse tree.
Figure 2 (left) shows the evolution of the fractional RMSD between the two propagating trees. In six
out of seven cases, the RMSD could be significantly reduced. Figure 2 (right) shows the forward and
reverse tree for the first 1000 samples of protein Gαs, with color representing reduced mobility due to
additional clash constraints. Figure 3 finally shows the initial (left), target (mid-left) and final aligned
conformations of the forward and reverse tree (mid-right). We observe great agreement in the RAS
and the α-helical domain. The right panel shows the cumulative change of torsion angles during the
forward transition.
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Figure 2: Evolution of RMSD (heavy atoms) between the two propagating trees during exploration
of the test proteins. We iteratively restart the RRT after 1000 samples (left). Forward
and reverse tree for the first 1000 samples of protein Gαs. Color represents mobility at an
individual conformation due to additional clash constraints, with blue encoding no clash
constraint (right).

Figure 3: Conformational transition of Gαs with initial, inactive conformation (left), active target
conformation (mid-left) and superimposed final conformations of the forward (dark blue)
and reverse (salmon) tree. The RMSD is 5.32Å(mid-right). Cumulative change of torsion
angles between the initial and the final conformation of the forward tree. Thicker and
red-shifted backbone areas contribute more to conformational changes (right).
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Numerical convergence study for variational multirate integrators

Tobias Gail, Sina Ober-Blöbaum, Sigrid Leyendecker

The integration of a mechanical system containing slow and fast dynamics has contradicting require-
ments. On the one hand, for a stable integration of the fast dynamics, tiny time steps are needed. On
the other hand, for the slow dynamics, larger time steps are accurate enough. Furthermore, too small
time steps increase the computing time unnecessarily, especially for costly function evaluations.
For this, multirate formulations split the system into subsystems [1] which can be solved with different
methods. To approximate the solution, rather than choosing one time grid we choose two time grids.
Figure 3 shows such a time grid with macro time grid and micro time grid. Here, the macro time step
is ∆T , the micro time step is ∆t and ∆T ≥ ∆t holds. As described in the framework of variational
multirate integration [2] which is developed on the basis of variational integrators. This approach leads
to a reduction of computing time, see [3]. The numerical convergence is investigated for unconstrained
systems like the Fermi-Pasta-Ulam problem (FPU) illustrated in Figure 2 and systems subject to
constraints like the simple atomic model (SAM) shown in Figure 1.
Let a mechanical system be described by a Lagrangian with configuration vector q(t) ∈ Q ⊆ Rn
with Q a configuration manifold and velocity vector q̇ ∈ TQ ⊆ Rn in the tangent space TQ. Also,
let the mechanical system be constrained by the mc-dimensional holonomic function of constraints
requiring g(q) = 0. Now, let the mechanical system contain slow and fast dynamics, characterised
by the possibility to split the variables into ns slow variables qs and nf fast variables qf with q =
(qs, qf ) and n = ns + nf . Furthermore, we assume that we can split the potential energy into a
slow potential V (q) and a fast potential W (qf ). The action S is the time integral of the Lagrangian
L(q, q̇) = T (q̇)− V (q)−W (qf ). Via Hamilton’s principle requiring stationarity of the action δS = 0,
the constrained multirate Euler-Lagrange equations are derived. Here, T denotes the kinetic energy
and λ the Lagrange multiplier.

d

dt

∂T

∂q̇s
− ∂V

∂qs
−
(
∂g

∂qs

)T
· λ = 0

d

dt

∂T

∂q̇f
− ∂V

∂qf
− ∂W

∂qf
−
(
∂g

∂qf

)T
· λ = 0

g(q) = 0 (1)

The macro time grid provides the domain for the discrete slow variables qsd = {qsk}Nk=0 with qsk ≈ qs(tk),
while the micro time grid provides the domain for the discrete fast variables qfd = {{qf,mk }pm=0}N−1

k=0

Chair of Applied Dynamics, Annual Report 2015 16



3 Research

mm

m

m

m

m

l

l

l1

1

1

2

2

2

4

l3
l5

l7

l8
l9

l6

35

4

5

6

slow

slow

fast
fast

fast

fast







4

3

e

e
e

1

2

3

g

Figure 1: SAM with slow and fast variables

Figure 2: FPU with 6 masses and slow and fast
variables

Figure 3: Macro and micro time grid

with qf,mk ≈ qf (tmk ). The domain for the discrete Lagrange multipliers is the macro and the micro grid,

for example on the micro time grid λd = {{λmk }
p
m=0}N−1

k=0 with λmk ≈ λ(tmk ). The discrete Lagrangian
and the discrete constraints approximate the action over one macro time step.

Ld(q
s
k, q

s
k+1, q

f
k , λk) ≈

∫ tk+1

tk

L(q, q̇)− g(q)T · λ dt.

The sum over all time steps is the discrete action which approximates the continuous action. Via
a discrete form of Hamilton’s principle requiring stationarity for the discrete action, we derive the
discrete constrained multirate Euler-Lagrange equations. These equations form a nonlinear set of
equations which are solved using a Newton-Raphson method.
Quadrature rules are needed to approximate the action and constraints by discrete quantities. We
use e.g. the midpoint rule, the trapezoidal rule, an affine combination and finite difference. Different
quadrature rules can be chosen for the kinetic energy, both potential energies and the constraints and
lead to ”fully implicit”, ”explicit slow, implicit fast” and ”fully explicit” schemes.
The convergence is shown numerically for the FPU and the SAM example for the fully implicit, explicit
slow, implicit fast and the fully explicit quadrature schemes. The global error

eq = sup
k=0,...,N

{‖qk − q(tk)‖} (2)

of the configuration as well as the error ep of the conjugate momentum is calculated for all quadrature
schemes at the macro nodes. Both global errors are plotted versus the macro time steps ∆T for the
FPU and for the SAM in Figure 4. We see on the left hand side convergence of order two for both
systems for the fully implicit scheme. On the right hand side, a convergence of order one is shown
for the fully explicit scheme. In the middle, there is a difference in order of convergence for the two
systems. The top left shows a convergence of order one for the FPU and the bottom plot shows a
convergence of order 1.5 for the SAM.
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Figure 4: Error of configuration and conjugate momentum with p = 5 and ∆T → 0, ∆t → 0 for the
fully implicit scheme (left), explicit slow, implicit fast (middle) and fully explicit (right) for
FPU (top) and SAM (bottom)
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Optimal feedback control for constrained mechanical systems

Daniel Glaas, Sigrid Leyendecker

Today, a lot of mechanical systems have to operate with an improved performance compared to equal
constructions decades ago. Reasons therefore are e.g. higher energy costs and a globalised market with
more competitors. To stay competitive, engineers of a mechanical systems need to find an optimal
control algorithm.

Variational integrator and DMOC The variational integrator as a variant of a structure-preserving
integration scheme is used. The continuous Lagrange function L(q, q̇) = T (q, q̇) − V (q) and the
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action integral S(q) =
∫ T

0 L(q, q̇)dt yield the Euler-Lagrange euquations via a variational principle
[2]. Using a midpoint quadrature rule to approximate the action integral and applying a discrete
variational principle δSd({qk}Nt

k=0) = 0 with configuration sequence qk ≈ q(tk) for k = 0, . . . , Nt and an

approximation of the virtual work with control sequence {uk}Nt−1
k=0 , the Lagrange-d’Alembert principle

yields a discrete Euler-Lagrange equation in a ”position-momentum form that only depends on the
current and future time steps” [1]. This principle is applied to three different coordinate choices, at
first in minimal coordinates with qk ∈ Rf , pk ∈ Rf , in redundant coordinates with qk ∈ Rn, pk ∈ Rn
by using holonomic constraints g(q(t)) = 0 ∈ Rm, G(qk) = ∂g(qk)

∂qk
and the nullspace coordinates with

qk ∈ Rn, pk ∈ Rf using the nullspace matrix P T (qk) ·GT (qk) = 0 ∈ Rf×(n−f). The equations for the
redundant coordinates in ”pq-formulation” are

pk +
∂Ld(qk, qk+1)

∂qk
+ F−d (qk, qk+1, uk)−GT (qk)λk∆t = 0

g(qk+1) = 0

pk+1 =
∂Ld(qk, qk+1)

∂qk+1
+ F+

d (qk, qk+1, uk)

Together with initial and final conditions for the configuration and conjugate momentum, the discrete
equations serve as non-linear equality constraints for the minimisation of a given objective functional.
Applying the DMOC (discrete mechanics and optimal control, see [4, p. 49-52]) algorithm, an optimal
trajectory and according control input is calculated.

Riccati-controller Even when knowing an optimal trajectory xopt =
[
qopt popt

]T
of a system, in

reality the mechanical system will not follow the predefined path because of several perturbations.
The correction of these are done by feedback controllers. The main idea of the control mechanism is

storage
+ +

dynamic
system

Kk

−+

uopt,k uk

xopt,k

xk

xk

exk

uR,k

Legend:
uopt,k: optimal control input
xopt,k: optimal system state

xk: measured state
exk

: error of system state
uR,k: additional control input
uk: summarised control input 

Figure 1: Block diagram of general feedback control

to add an additional value uR to the optimal control input uk = uopt,k+uR,k based on the superposition
principle. In general, uR is defined as a function of ex for the time step k, i.e. uR,k = f(exk), with
exk being the difference between the desired state space xopt and the ”measured” state space x,
i.e. exk = xopt,k − xk. Often, a linear feedback multiplication with the feedback matrix Kk

uR,k = f(exk) = Kkexk (1)

does fine. The resulting block structure is shown in Figure 1. In the background of the optimal
control approach, the Riccati feedback controller is commonly used to minimise a cost-function V =
Nt−1∑
k=0

[
eTxkQkexk + uTR,kRkuR,k

]
+eTxNt

QNtexNt
with real weighting matricesQk and Rk. After linearising

the system to δxk+1 = Ak · δxk + Bk · δuk, the discrete Riccati equation (see [3, Eq. (14.5), (14.6)])
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can be applied

Pk = Qk +ATk PkAk −AkPkBT
k

[
Rk +BT

k PkBk
]−1

BT
k PkAk (2)

Kk =
[
Rk +BT

k PkBk
]−1

BT
k PkAk (3)

Using symmetric positive definite matrices for Qk and Rk, Pk can be implicitly calculated as positive
defined solution of (2) (see [3, p. 298]). After that, the matrix Kk as defined in (3) and the optimal
additional control input uR is calculated. Figure 2 shows the complete process of the optimal control in

x0 k x0 6=x0

generation
optimal
control

storage
+ +

dynamic
system

Lineari-
sation

criterias for
an optimal
trajectory

Riccati
controller Kk

−+

xNt

T

e.g. cost
function

QkRk

[uopt,k]

[xopt,k]
uopt,k uk

xopt,k+1

xopt,k

xopt,k

xk

xk

Ak, Bk

Kk

exk

uR,k

optimal control

variational integrator

Riccati
feedback
controller

Figure 2: Block diagram of feedback control for optimal trajectories with the Riccati approach

a block diagram, beginning with the preprocessing of generating an optimal trajectory (green dashed
box). These results are the input for the variational integrator (red dashed box), which simulates the
behaviour of the real physical system and is extended by the Riccati feedback controller (blue dashed
box) to calculate uR,k.

2D-pendulum The described algorithm is applied to the 2D-
pendulum as shown in Figure 3. The configuration, momentum und
actuation vectors are defined as

• minimal: qmin = θ, pmin = pθ, umin = u

• redundant: qred =
[
x y

]T
, pred =

[
px py

]T
,

ured =
[
Fx Fy

]T

• nullspace: qnull =
[
x y

]T
, pnull = pθ, unull =

[
Fx Fy

]T
.

x

y u

lθ FtFy

Fx
θy

x

m

Figure 3: Parametrisation of
the 2D-pendulum

For comparing the Riccati-control algorithm for the three parametrisations, an optimal upswing from
θ0 = 0 to θNt = π is calculated in DMOC. For disturbed initial conditions θ0 = 1, the corrected
trajectories of all three implementations are very similar compared to each other as plotted in Figure
4. Only during the time of 0.1s to 0.7s, there are some slight differences.
Based on this the control effort is compared, being the sum of all past time steps over a term weighting
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Figure 4: Comparison of the configuration trajectory of variational integrator with feedback controller
for all coordinate choices for T=3s and ∆t=0.01s

the effort of the additional control Vuk =
k∑
i=0

uTR,iRuR,i. In Figure 5, Vuk is plotted for all three

coordinate choices.
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Figure 5: Comparison of the control effort of variational integrator with feedback controller for all
coordinate choices for T=3s and ∆t=0.01s

All graphs are strictly increasing as being a sum of positive terms and the gradient corresponds to
the difference of the controlled trajectory to the reference trajectory. After the first second, all three
sums are changing only very slightly. Comparing the absolute values, the minimal coordinates scheme
requires least control effort with the best accuracy whereas the redundant coordinates scheme has the
highest control effort. The nullspace parametrisation is situated in the middle between the other two.
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Towards bridging the gap between motion capturing and biomechanical optimal control
simulations

Ramona Hoffmann, Tobias Gail, Bertram Taetz, Markus Miezal, Gabriele Bleser, Sigrid Leyendecker

Within this work, we make a first attempt towards improving human motion capture by combining
motion capturing measurements and optimal control simulations of a human steering motion. We start
with measurements obtained from a stationary optical system, a widespread capturing technology in
biomechanics and movement science, under laboratory conditions. From an optimal control point of
view, the goal is to increase the realism of simulated human motion through measurements. From a
motion capturing point of view, the goal is to compensate for measurement sparsity, errors or lacks
through meaningful assumptions based on biomechanical simulation. Our preliminary results show
that a fusion of physical laws, biomechanical simulation and real data within an optimal control
simulation framework indeed have the potential to improve motion capture and synthesis with respect
to some of their inherent problems.

Human arm model For the simulation, the human arm is modelled as a multibody system consisting
of three rigid bodies. A cylindrical upper arm is fixed in space by a spherical joint representing the
shoulder. The elbow and wrist are modelled as cardan joints connecting the cylindrical forearm to the
upper arm and the parallelepiped shaped hand to the forearm, respectively (see Figure 1). The bodies’
dimensions are personalised for the subject and the optical marker positions are placed manually in
the model based on measurements. Thus, the exact definition of the personalised model is already a
result from the measured data.

Figure 1: Human arm model with marker positions used for optimal control simulations. The three
markers around the elbow are denoted el in, el out, el tip. The two markers at the wrist are
denoted wr th and wr pi. There is one marker on the hand.

Optimal control problem and simulation Two inherently different approaches for the solution of
an optimal control problem are the so called indirect (first optimise then discretise) and direct (first
discretise then optimise) approach, see e.g., [7, 2]. In this work, a direct transcription method called
discrete mechanics and optimal control for constrained systems (DMOCC), see [4, 6], falling into the
latter class, is used to approximate the solution at the time nodes t0, t1 = t0 + h, . . . , tN = t0 + Nh
on an equidistant time grid with time step h. As described in detail in [1], the kinematic description
of the rigid multibody system is based on a redundant configuration variable qk ∈ R36, k = 0, . . . , N
consisting of the placement of the centre of mass and the orientation represented by three directors that
are aligned with the principal axes of inertia for each rigid body, respectively. A set of 29 holonomic
constraints ensure orthonormality of each body’s directors (thus they represent the columns of a
rotation matrix) as well as the coupling by the joints, thus the complete model has 7 degrees of freedom.
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A nodal reparametrisation Fd : R7 → R36 updates the redundant configuration qk+1 = Fd(uk+1, qk)
for k = 0, . . . , N − 1 in terms of discrete generalised coordinates ud = {uk}Nk=1 with uk ∈ R7 such
that the constraints are fulfilled. In contrast to a formulation in terms of minimal coordinates (joint
angles) from the beginning, this procedure ensures that rotations are always small and thus avoids
the danger of singularities. The configuration variable q can be treated in a linear space, yielding
a Lagrangian function with a constant mass matrix. A structure preserving scheme (symplectic-
momentum with good energy behaviour) approximates the dynamics. It is derived via a discrete
variational principle, see [5], where a discrete Lagrangian Ld : R36×R36 → R approximates the action
in one time interval. The discrete Euler-Lagrange equations resulting from the stationary condition for
the discrete action are reduced to minimal dimension using a discrete null space matrix P (qk) ∈ R36×7

and the nodal reparametrisation Fd resulting in (2), see [1, 3]. They involve the left and right control
forces f+

k−1 = B(qk) · τk−1, f
−
k = B(qk) · τk ∈ R36 which are computed from the discrete generalised

controls τd = {τk}N−1
k=0 with joint torques τk ∈ R7 (assumed to be constant during one time interval)

using the input transformation matrix B(qk) ∈ R7×36, see [4] for a detailed introduction to DMOCC.
The optimal control problem is simulated solving the following nonlinear constrained optimisation
problem using an SQP algorithm in Matlab. Minimisation of the objective function Jd

min
ud,τd

Jd(ud, τd) (1)

subject to the fulfilment of the discrete equations of motion

P T (qk) ·
[
D2Ld(qk−1, qk) +D1Ld(qk, F (uk+1, qk)) + f+

k−1 + f−k
]

= 0 (2)

boundary conditions
s(ud, τd) = 0 (3)

and path constraints
h(ud, τd) ≤ 0 (4)

We perform optimal control simulations with different objective functions and path constraints. The
measured marker positions are part of the inequality constraints. First a feasible trajectory is gener-
ated, after that physiologically motivated cost functions are used:

• Feasible trajectory. State and control trajectories that are feasible in the sense that they fulfil the
equations of motion (2) and boundary conditions (3) are obtained my minimising the objective

Jd(ud, τd) = 1

with the additional path constraints (4) imposing an upper bound ε ∈ R on the marker position’s
residual errors taking the form

h(ud, τd) =

N∑

k=0

(mk − m̄k)
T · (mk − m̄k)− ε (5)

• Minimisation of torque. The second cost function minimises the control effort

Jd(ud, τd) =
∆t

2

N−1∑

k=0

τTk · τk

subject to the discrete equations of motion (2), boundary conditions (3) and path constraints
(5).
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• Minimisation of torque change. In the last problem, the temporal torque change is minimised,
thus

Jd(ud, τd) =
∆t

2

N−2∑

k=0

∥∥∥∥
τk+1 − τk

∆t

∥∥∥∥
2

while the discrete equations of motion (2), boundary conditions (3) and path constraints (5) are
fulfilled.

Results Reducing the measurement update rate results in a range between 100 and 7.69 Hz. Figures
2 and 3 show the error statistics for the tested measurement rates based on a piecewise constant and
a piecewise linear initial guess, respectively. Error is here defined as the Euclidean distance between
the configurations q obtained from the reference simulation (using a measurement frequency of 100 Hz
in the feasible, torque minimising and torque change minimising simulation) and the simulation with
reduced measurement update rate at each time node tk, k = 0, . . . , N . The figures then report the
average error and its standard deviation for a complete simulation (y-axis) over the measurement rate
(x-axis). Each vertical line (illustrating the standard deviation) represents one successful simulation.
Missing vertical lines indicate a simulation failure, e.g., due to divergence of the SQP algorithm. Note
that errors are computed only in the time interval [0, 0.39]s, since m̄39 is the last measurement used
in all simulations.
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Figure 2: Mean errors and standard deviations based on piecewise constant initial guess.

When comparing Figures 2 and 3, in particular the close-ups, it can be observed that some simulation
experiments have failed below 20 Hz when using a piecewise constant initialisation. Hence, linear
interpolation enables convergence at very low measurement update rates. Moreover, it can be seen in
the figures that linear interpolation also reduces the overall errors. This is particularly visible for the
feasible solution.
When looking at Figure 3, as expected, the errors and standard deviations increase with reduced
measurement update rate for all solutions. However, the error of the feasible solution is consistently
higher than the error of the solutions including a physiological cost function term. Below 20 Hz, errors
and standard deviations of the feasible solution increase significantly and the last two simulations
even fail. In contrast, minimising torque and torque change show a better behaviour. Minimal
torque shows the lowest error until 12.5 Hz, however, then starts to increase significantly, and fails
for the last simulation at 7.69 Hz. Minimal torque change successfully converges for all experiments
and shows a comparably small error increase even at the lowest measurement frequencies. These
observations confirm that, in our experimental settings, biomechanical simulation can compensate for
low measurement update rates. Moreover, while the torque minimising solution provides the most
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Figure 3: Mean errors and standard deviations based on piecewise linear interpolation for initial guess.

accurate results down to a certain measurement rate, the torque change minimising solution provides
acceptable accuracy for even lower measurement update rates, hence adds further stability. To provide
more detailed insights, Figure 4 illustrates the error evolution in q (configuration error) for two concrete
measurement update rates (using linear interpolation for the initial guess). We chose 33.3 Hz (every
3rd measurement) as representative for a mid-range frequency and 8.33 Hz (every 12th measurement)
as lowest frequency with results for all solutions.
These figures confirm the above observations. In addition, it is nicely visible in Figure 4(b), that the
errors show a periodic pattern induced by the measurement update rate, i.e., the error becomes lower
around measurement points. This is most apparent for the feasible solution, but also clearly visible
for the minimal torque solution. Interestingly, the minimal torque change solution, even if showing a
slightly higher error than the minimal torque solution for the mid-range frequency, is much less affected
by the measurement points. This might indicate a higher independence from measurements, a better
ability to deal with errors in these and, as a result, a higher robustness. On the other hand, also
error of the time stepping equations (with respect to an analytical solution) grows as the simulation
advances in time. This point needs further investigation in the future. One can also observe that the
error tends to decrease throughout the simulation, in particular for the low measurement update rate
and the minimal torque and torque change solutions.
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(a) 33.3 Hz measurement update rate
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Figure 4: Error evolution in configuration q.
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From the investigated objective functions here, minimising torque change shows the most realistic and
natural results and the highest stability with respect to the reduction of the measurement frequency.
The most obvious future task is to confirm these observations with different types of motions and other
physiologically motivated objective functions. Furthermore, it is worthwhile to take into account also
measurements of the bodies orientation instead of only marker point positions and information on the
accelerations and angular velocities measured from inertial sensors. In particular, the latter means
not merely the inclusion of more and different type of data, but the move towards ambulatory motion
capturing may overcome many of the shortcomings of optical stationary systems discussed in the
introduction and enable a wide range of applications outside the lab. However, also many technical
aspects need to be investigated. If there is knowledge on the precession or error-proneness of certain
measurements, weighting factors can be introduced accordingly. Secondly, not only the measurement
rate, but also the number of marker positions can be reduced, excluding ,e.g., those with most soft
tissue artefacts.
Finally, the inclusion of further information known about the considered motion, like the presence
of obstacles in the environment or contact to the surroundings, as, e.g., of the hand moving on a
circle due to its contact to the steering wheel, may help to increase the realism and naturalness of the
simulated motion.
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[4] S. Leyendecker, S. Ober-Blöbaum, J. Marsden, and M. Ortiz. Discrete mechanics and optimal
control for constrained systems. Optimal Control Applications & Methods, Vol. 31(6), pp. 505-
528, 2010. DOI: 10.1002/oca.912.

[5] J. Marsden and M. West. Discrete mechanics and variational integrators. Acta Numerica, Vol. 10,
pp. 357-514, 2001.
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Multisymplectic variational integrators for PDEs of geometrically exact beam dynamics
using algorithmic differentiation

Thomas Leitz, Sigrid Leyendecker

For the simulation of geometrically exact beam dynamics [4], a multisymplectic Lie-group variational
integrator [3] is derived. Based on the implementation of the discrete Lagrangian, algorithmic differ-
entiation is used in the computation of both, the discrete Euler-Lagrange equations, and the Jacobi
matrix needed for the Newton-Raphson iteration. Using s, t ∈ R as arc-length and time paramters,
translational degrees of freedom of the cross-sections are parameterized using three-dimensional vectors
x (s, t) ∈ R3 and rotational degrees of freedom are parameterized using unit-quaternions p (s, t) ∈ H1.
In geometrically exact beam dynamics, the cross-sections stay plane and undeformed at all times. The
Lagrange density for geometrically exact beams L (p, ω,Ω, x, ẋ, x′, s) is given in terms of the transla-
tional velocities and strains ẋ = d

dtx and x′ = d
dsx and rotational velocities and strains ω = 2p̄ṗ and

Ω = 2p̄p′. Hamilton’s principle leads to the continuous Euler-Lagrange equations in the form of partial
differential equations. The discrete Lagrangian Lja is an approximation of the action integral of an

Figure 1: A beam with 44 elements

element in a regular spacetime grid and the discrete action Sd is the sum over all discrete Lagrangians
covering spacetime. Each spacetime element has four nodes, a is the space index and j is the time
index, thus we write pja = p

(
tj , sa

)
. Positions are interpolated bilinearly and for the rotations, we

use quaternion linear blending (QLB) and subsequent differentiation with respect to s and t in order

to derive discrete velocities and strains. With αi = t−tj
tj+1−tj and βi = s−sa

sa+1−sa , P ja is the interpolation
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Figure 2: Spacetime element for the interpolation between the four corners
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between the four nodes of one spacetime element (see Figure 2)

P ja (s, t) =

(
1− βi

) (
(1− αi) pja + αip

j
a

)
+ βi

(
(1− αi) pja+1 + αip

j
a+1

)

∥∥∥(1− βi)
(

(1− αi) pja + αip
j
a

)
+ βi

(
(1− αi) pja+1 + αip

j
a+1

)∥∥∥

and the discrete angular velocity and strain are

ωja (s, t) = 2P̄ ja Ṗ
j
a =

1

B2

2

∆tj

[(
1− βi

)2=
(
p̄jap

j+1
a

)
+
(
βi
)2=

(
p̄ja+1p

j+1
a+1

)

+
(
1− βi

)
βi
(
=
(
p̄jap

j+1
a+1

)
+ =

(
p̄ja+1p

j+1
a

))]

Ωj
a (s, t) = 2P̄ jaP

′j
a =

1

B2

2

∆sa

[
(1− αi)2=

(
p̄jap

j
a+1

)
+ (αi)

2=
(
p̄j+1
a pj+1

a+1

)

+ (1− αi)αi
(
=
(
p̄jap

j+1
a+1

)
+ =

(
p̄j+1
a pja+1

))]

According to the discrete Hamilton’s principle, the variation of the discrete action vanishes,
i.e. δSd = 0, while holding the boundaries of spacetime fixed. This leads to the coupled mixed frame
discrete Euler-Lagrange equations




1

2
=
(
p̄ja
∂Lja

∂pja
+ p̄ja

∂Lj−1
a

∂pja
+ p̄ja

∂Lja−1

∂pja
+ p̄ja

∂Lj−1
a−1

∂pja

)

∂Lja

∂xja
+
∂Lj−1

a

∂xja
+
∂Lja−1

∂xja
+
∂Lj−1

a−1

∂xja




=




0
0
0
0
0
0




These form the variational integrator and are implemented using the C++ algorithmic differentiation
library CppAD [1] in conjunction with the linear algebra library Eigen [2]. This object oriented
approach leads to rapid development of new integrators through the combination of the expressive
syntax of Eigen and the elimination of the need for symbolic derivatives by algorithmic differentiation.
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Time transformed mixed integer optimal control problems with impacts

Maik Ringkamp, Sina Ober-Blöbaum, Sigrid Leyendecker

Mixed integer control systems are used to model dynamical behavior that can change instantly, for
example a driving car with different gears [1]. Changing a gear corresponds to an instant change of the
differential equation what is achieved in the model by changing the value of the integer control function.
The optimal control of a mixed integer control system by a discretize-then-optimize approach leads
to a mixed integer nonlinear optimization problem (MINLP) that is not differentiable with respect to
the integer variables, such that gradient based optimization methods can not be applied to solve the
MINLP at once. In this work, differentiability with respect to all optimization variables is achieved
by reformulating the mixed integer optimal control problem (MIOCP) using a time transformation.
The time transformed mixed integer optimal control problem (TMIOCP) is shortly introduced, it
allows to change the sequence of active differential equations while the discretized problem does not
have integer optimization variables. Thus, the discretized TMIOCP is an ordinary nonlinear program
(NLP) and gradient based optimization methods can be applied to solve it. In contrast to other works,
here MIOCPs where impactive switches are caused due to mechanical contact are taken into account.
Forced and constrained Hamiltonian systems with a Hamiltonian Hl : Rnq × Rnq → R, holonomic
constraints ghl : Rnq → Rngh and control forces fl : Rnq × Rnq × Rnu → Rnq for each integer value
l ∈ V = {1, 2, . . . , nV} are investigated. The purely continuous differential algebraic equation for each
l ∈ V is defined as follows

q̇ =
∂Hl

∂p
(q, p) (1)

ṗ = fl(q, p, u)− ∂Hl

∂q
(q, p)− ∂

(
ghl
)T

∂q
(q)λ (2)

0 = ghl (q) (3)

The functions q : I → Rnq and p : I → Rnq (for a time interval I = [t0, tf ]) represent the position and

the momentum of the dynamical system,
∂(ghl )

T

∂q (q)λ, with time dependent λ(t) ∈ Rngh represents
the constraint forces. A Hamiltonian is typically given by Hl(q, p) = Tl(q, p) + Vl(q) with the
systems kinetic energy Tl(q, p) = 1

2p
T (Ml(q))

−1 p and its potential energy Vl(q). The matrix Ml(q)
is symmetric and positive definite and thus invertible. A simple example for a force function is the
thrust of an engine, that is directly given by u with fl(q(t), p(t), u(t)) = u(t). Denoting the right-hand
side of (1) and (2) by F (x, u, l) and the state by x = (q, p), leads after the time transformation to
the differential equation (5). Further, the holonomic constraints ghl (q) = 0 can be integrated in the
integer dependent mixed state-control constraints g(x, u, l) ≤ 0 and lead after the time transformation
to (7). The constraints g(x, u, l) ≤ 0 are in general used to restrict x and u to specific domains
Dl = {(x, u) ∈ Rnx × Rnu |g(x, u, l) ≤ 0} if the integer value l ∈ V is active (cf. [2]). Further
possible integer independent mixed state-control constraints (6), constraints associated with the time
transformation (9), (10) as well as boundary constraints (8) in combination with an objective (4)
define the TMIOCP as follows
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Definition 1 (TMIOCP)

min
x,u,w

J∗(x, u, w) =

∫

I

w(τ)B(x(τ), u(τ), v̄N,n(τ)) dτ (4)

s. t. ẋ(τ) = w(τ)F (x(τ), u(τ), v̄N,n(τ)) for a.e. τ ∈ I (5)

g0(x(τ), u(τ)) ≤ 0 for a.e. τ ∈ I (6)

w(τ)g(x(τ), u(τ), v̄N,n(τ)) ≤ 0 for a.e. τ ∈ I (7)

r(x(t0), x(tN )) = 0 (8)

w(τ) ≥ 0 for a.e. τ ∈ I (9)

∆Ij =

∫

Ij

w(s)ds (10)

Here, v̄N,n ∈ L∞(I,V) denotes the fixed integer control function and w ∈ L∞(I,R) the time control,
see [2]. The Equation (9) ensures that the transformed time does not move backwards and (10)
ensures that major time grid nodes are fixed. It is necessary to fix the major time grid nodes to
guarantee a certain accuracy of the approximated trajectories and a fixed total maneuver time. The
time transformed differential algebraic equation (1)-(3) is discretized for each integer variable l ∈ V
by the Rattle integrator [3]:

0 = qk − qk+1 +
wkhk

2

(
∂H

∂p
(pk+1/2, qk) +

∂H

∂p
(pk+1/2, qk+1)

)
(11)

0 = pk − pk+1/2 −
wkhk

2

(
∂H

∂q
(pk+1/2, qk) +

∂
(
ghl
)T

∂q
(qk)λk − f(qk, pk, uk)

)
(12)

0 = wkg
h
l (qk+1) (13)

0 = pk+1/2 − pk+1 −
wkhk

2

(
∂H

∂q
(pk+1/2, qk+1) +

∂
(
ghl
)T

∂q
(qk+1)µk − f(qk, pk, uk)

)
(14)

0 = wk
∂
(
ghl
)T

∂q
(qk+1)

∂H

∂p
(pk+1, qk+1) (15)

Here, the equations (14) represent a projection step with µk ∈ Rngh and the equations (15) represent
the holonomic constraints on velocity level.
The first example of an impactive hybrid system that is considered is a double pendulum, where only
the first angle is actuated and the second angle is lockable, see Figure 1 (left). In the case that the

system with the integer variable l = 1 is active, the pendulum is unlocked and ghl and
∂ghl
∂q are replaced

by zero, such that the equations (13) and (15) vanish. In the case that the system with the integer
variable l = 2 is active, the pendulum is locked and it holds that ghl (qk+1) = (q2)k+1 − (q2)k, such
that the value of the second angle (q2)k+1 does not change if equation (13) is fulfilled. Further integer
dependent constraints g1(qk, qk+1) = ((q1)k, (q1)k+1) ≤ (π2 ,

π
2 ) and g2(qk, qk+1) = −((q1)k, (q1)k+1) ≤

(π2 ,
π
2 ) define the domains D1 and D2 and assure that the pendulum is locked if the first angle is

greater than or equal to π
2 . The boundary constraints (8) and the objective (4) are selected, such that

the optimized trajectory describes an upswing maneuver with minimal control effort
∫
I u

2dt. Figure 1
(middle and right) represents the results of the optimization using the gradient based IPOPT interior
point method [4].
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lockable double pendulum J∗ = 1.45861
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Figure 1: Sketch of the lockable double pendulum (left). Locally optimal discretized state trajectory
(middle), control trajectory (top right) and the trajectory of the mass positions (bottom
right)
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Dielectric elastomer actuated multibody systems

Tristan Schlögl, Sigrid Leyendecker

Dielectric elastomer actuators (DEAs), also known as artificial muscles, belong to the group of smart
materials. If a voltage is applied to the elastic material, it contracts. The underlying functional
principle is based on contractive forces between opposite charges on a plate capacitor, as shown in
Figure 1. If the electrodes of the capacitor as well as the insulating material in between are both
elastic and not spatially fixed, attractive charges lead to a contraction. Dielectric actuators have a
high potential for replacing electrical drives in various systems. They can be used as actuators in
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soft robotics, providing safe and robust humanoid systems. A computer model of the time dependent
behaviour of this smart material is used to accompany the manufacturing process and provide optimal
control for DEA actuated multibody systems.

Figure 1: Stacked actuator and the functional principle of a single element

A variational formulation of a three-dimensional, electromechanically fully coupled and time depen-
dent simulation model is presented in [2]. Via finite elements, the model allows to simulate arbitrary
geometries of dielectric elastomers including hyperelastic material behaviour and viscoelastic damp-
ing. It is based on the Maxwell equations for electrostatics, the mechanical momentum balance and
the theory of electromagnetic forces in deformable continua. The actuator model is coupled with a
multibody system consisting of rigid bodies and joint connections. This framework allows to simulate
multibody systems, e.g. humanoid robots, that are actuated by artificial muscles. The coupling be-
tween the finite element model of the muscle and the rigid structure is formulated at position level and
enforced by the Lagrange multiplier method, resulting in an index-3 system. A structure preserving
integration scheme allows solving the index-3 system directly and with numerical accuracy at position
level. Index reduction techniques are not used and there is no erroneous drift in the fulfilment of the
constraints. A certain representation of the rigid bodies called director formulation avoids any rota-
tional degrees of freedom and hence numerical instabilities associated with rotations. Additionally,
due to the director formulation, all constraints between the finite element model and rigid bodies are
linear. Therefore, the whole framework can be formulated in a very modular way.
The discrete Lagrange-d’Alembert principle for constrained systems reads

D1Ld(qn, qn+1) +D2Ld(qn−1, qn)−GT (qn) · λn
+f(qn, qn+1) + f(qn−1, qn) = 0

(1a)

g(qn+1) = 0 (1b)

where Ld is the time discrete Lagrangian, qn the discrete configuration at time tn, G the Jacobian
of the constraints g and f the discretised external forces. Di is the derivative operator with respect
to the i-th argument of the succeeding function. The evaluation of (1) yields a non-linear structure
preserving time integration scheme [1].
Considering only kinetic and potential energies of the muscle model and introducing the configuration
rn containing all degrees of freedom of the muscle model at time tn, namely translations and electric
potentials associated with finite element cells, (1a) yields the integration scheme

Fr(rn−1, rn, rn+1) = 0 (2)

with the linearised form
Fr +Kr ·∆rn+1 = 0 (3)

where Kr = D3Fr. In contrast to the finite element configuration r, the configuration s contains all
degrees of freedom of the multibody system. Considering only energies of the multibody system, (1)
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yield the integration scheme

T T (sn) · Fs(sn−1, sn, sn+1) = 0 (4a)

h(sn+1) = 0 (4b)

where h are the discrete multibody constraints accounting for joints as well as orthonormality of the
directors and T is the null space matrix eliminating Lagrange multipliers that result from multibody
constraints [1]. The corresponding linearised version is given as

(
T T · Fs
h

)
+

(
T T ·Ks

H

)
·∆sn+1 = 0 (5)

with Ks = D3Fs and the discrete multibody constraint jacobian H = Dh.

Figure 2: Linear coupling constraints between the finite element muscle model and the multibody
system with directors dI , I = 1, 2, 3, rigid body centre of mass ϕ, finite element node position
x and coupling location %

The configuration q of the coupled system is given as

qn =

(
rn
sn

)
(6)

Because a director formulation is used for the multibody system that avoids the occurrence of rotational
degrees of freedom, discrete coupling constraints g(r, s) between the muscle model and a rigid body
are linear functions of the total configuration q (see Figure 2) and the associated discrete constraint
Jacobian

G =
(
Gr Gs

)
with Gr = D1g(r, s)

and Gs = D2g(r, s)
(7)

is constant in time. Evaluating (1) for the coupled system leads to the integration scheme




Fr −GT
r · λn

T T ·
(
Fs −GT

s · λn
)

h
g


 = 0 (8)

Chair of Applied Dynamics, Annual Report 2015 33



3 Research

with the linearised form



Fr −GT
r · λn

T T ·
(
Fs −GT

s · λn
)

h
g


+




Kr 0 −GT
r

0 T T ·Ks −T T ·GT
s

0 H 0
Gr Gs 0


 ·




∆rn+1

∆sn+1

∆λn


 = 0 (9)

with λn being the Lagrange multipliers of the coupling constraints. Due to the director formulation,
the linearised system’s matrix is independent of the Lagrange multipliers λ. The integration scheme
presented in (9) is implemented as C++ code using the library deal.II. Figure 3 shows possible motions
of different examples.

Figure 3: Numerical examples of a revolute joint (left), a cardan joint (mid) and two serial revolute
joints (right)
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Construction and analysis of higher order variational integrators for dynamical systems
with holonomic constraints

Theresa Wenger, Sina Ober-Blöbaum, Sigrid Leyendecker

Variational integrators of higher order for systems with holonomic constraints are constructed and
analyzed. The idea builds up on the variational integrators of higher order for unconstrained systems
in [3] and on the constrained Galerkin methods, that are presented in [2]. The integrators base on
a discrete version of the variational principle of Lagrangian mechanics. Consider an n-dimensional
mechanical system defined on the configuration manifold Q ⊆ Rn with configuration vector q ∈ Q
and velocity vector q̇(t) ∈ Tq(t)Q. The variable t denotes the time in the interval t = [t0, tN ]. The
Lagrangian L of a mechanical system is the difference of the kinetic energy T and the potential V . In
presence of holonomic constraints g(q) ∈ Rm, the scalar product −g(q) · λ augments the Lagrangian,
whereby λ ∈ Rm is the Lagrange multiplier. The so called augmented Lagrangian L̄ : TQ× Rm → R
is defined by

L̄(q, q̇, λ) = L(q, q̇)− g(q) · λ
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The approach is, to approximate the continuous curves of the configuration q, the velocity q̇ and the
Lagrange multiplier λ on the time interval [0, h] via the polynomials qd, q̇d and λd. The polynomial
qd(t; qk, h), t ∈ [0, h], is uniquely defined by s + 1 configurations qk = (q0

k, . . . , q
s
k) ∈ Qs+1 at s + 1

control points 0 = d0 < d1 < . . . < ds−1 < ds = 1, such that the polynomial passes through each qνk at
the time dνh, ν = 0, . . . , s. Analogously, w + 1 Lagrange-multipliers λk = (λ0

k, . . . , λ
w
k ) ∈ (Rm)w+1 at

w + 1 control points d̃0 = 0 < d̃1 < . . . < d̃w−1 < d̃w = 1 uniquely define the polynomial λd(t;λk, h),
t ∈ [0, h]. To get continuous approximations of q and λ on [t0, tN ], with [t0, tN ] =

⋃N−1
k=0 [kh, (k+ 1)h],

the conditions qsk = q0
k+1, k = 0, . . . , N − 2 and λwk = λ0

k+1, k = 0, . . . , N − 2 must be fulfilled. Note,

that the control points dj , j = 0, . . . , s of qd do not have to match the control points d̃j , j = 0, . . . , w
of λd, neither has the degree w of the polynomial λd to equal the degree s of qd. The splitting of
the augmented Lagrangian in the two parts Lagrangian and scalar product g(q) · λ enables the use of
different quadrature formulas for each part. The discrete Lagrangian Ld approximates the integral in
[0, h] of the Lagrangian via the quadrature formula (ci, bi)

r
i=1 of order ordL. gd is the approximation

of the integral in [0, h] of g(q) ·λ via the quadrature formula (ei, fi)
z
i=1 of order ordZ. The quadrature

formulas are w.r.t. the time [0, 1] with quadrature nodes ci respectively fi and the associated weights bi
respectively ei, in particular the Gauss and Lobatto quadrature are used here. S̄d is the approximation
of the augmented action integral S̄, i.e. the integral in [t0, tN ] of the augmented Lagrangian. Requiring
stationarity of S̄d yields the discrete Euler-Lagrange equations. Assume the Lagrangian L is regular
and the order ordL is high enough, such that the discrete Lagrangian flow is well defined. Further
assumptions such that gd is approximated via the Lobatto quadrature and the w+ 1 control points of
λd match the quadrature nodes fi, i = 1, . . . , z, with z = w+ 1, and s ≥ w, ensure that the number of
unknowns equals the number of linear independent equations in the discrete Euler-Lagrange equations
and yield stiffly accurate integrators. Under these assumptions, the discrete augmented Lagrangian
reads

L̄d(qk, λk) = Ld(qk)− gd(qk, λk) k = 0, . . . , N − 1 (1)

with

Ld(qk) =h

r∑

i=1

biL(qd(cih; qk), q̇d(cih; qk)) (2)

gd(qk, λk) =h

w∑

i=0

ei+1

[
g(qd(d̃ih; qk)) · λik

]
(3)

The corresponding discrete Euler-Lagrange equations are constrained variational integrators. The
preservation properties of these variational integrators are analysed and verified by numerical examples.
They are symplectic and therefore have a excellent energy long-time behaviour. Furthermore, they
preserve momentum maps proofed via the discrete Noether-theorem for constrained systems extended
to constrained variational integrators of higher order. It is shown, that the constructed variational
integrators are symmetric on configuration level, but not necessarily on momentum level, as the
hidden constraints ∂g

∂q (q)q̇ = 0 typically fail to be satisfied. The convergence orders of the variational
integrators are investigated numerically. The following remarks are valid only, when s = w or s = w+1
and ordL ≥ 2s. The results for the convergence order of the configuration q, briefly named ord(q),
can be summarized as follows. It must be distinguished between calculating Ld (2) via the Lobatto
or via the Gauss quadrature. Thus, the orders ordL and ordZ of the quadrature formulas determine

Ld via Gauss quadrature ord(q) = min(ordL, ordZ) = min(2s, 2r, 2w)
Ld via Lobatto quadrature ord(q) = min(ordL, ordZ) = min(2s, 2r − 2, 2w)

as the resulting order of the variational integrator in q. Furthermore, the configuration q is super
convergent of order 2s, when r ≥ s (approximating Ld (2) via the Gauss quadrature) respectively

Chair of Applied Dynamics, Annual Report 2015 35



3 Research

r ≥ s + 1 (approximating Ld (2) via the Lobatto quadrature). The order of the Lagrange multiplier
λ, ord(λ), is reduced compared to the order of the configuration q. The convergence order of the
momentum p, ord(p), is also mostly smaller than that of the configuration q. Note, that the momentum
p is calculated in a post-processing step via the discrete Legendre transform. There is a relation
between the degree w of the polynomial λd and the convergence orders of the Lagrange multiplier λ
and the momentum p recognizable.

w even: ord(p) = w + 2 ord(λ) = w
w uneven: ord(p) = w + 1 ord(λ) = w + 1

Moreover it is significant, that all orders are even. The constructed variational integrators are shown
to be symmetric in q, but not in p and in λ. However, the numerical examination reveals even orders
for q, p and λ. Furthermore, when s is greater than w + 1, order reduction in q, p and λ occurs. The
limitation of the order ordZ to 2w might be a reason.
The discrete augmented Lagrangian (1) can serve as a generating function for the SPARK integrators
of [1]. However, in [1] the SPARK integrator is applied to a system of index 2 ODAEs. Furthermore,
in contrast to [2] and [1], the restriction r = s for the quadrature nodes for approximating the integral
of the Lagrangian is dropped here as it is in [3] for the unconstrained systems.
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integrators. Advances in Computational Mathematics, Vol. 41, pp. 955-986, 2014.
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4.1 Teaching

Wintersemester 2015/2016

Biomechanik der Bewegung (MT)

Vorlesung + Übung H. Lang

Dynamik starrer Körper (MB, ME, WING, IP, BPT, CE)
Vorlesung H. Lang

Übung + Tutorium D. Budday, D. Glaas
T. Leitz, M. Ringkamp
T. Schlögl, T. Wenger

Mehrkörperdynamik (MB, ME, WING, TM, BPT)
Vorlesung H. Lang

Übung T. Wenger

Dynamisches Praktikum – Modellierung, Simulation und
Experiment (MB, ME, WING, IP, BPT)

D. Budday, D. Glaas
T. Leitz, M. Ringkamp
T. Schlögl, T. Wenger

Sommersemester 2015

Biomechanik (MT, MA, GPP)

Vorlesung + Übung H. Lang
geprüft 61 + 21 (WS 2014/2015)

Dynamik nichtlinearer Balken (MB, M, Ph, CE, ME, WING)

Vorlesung + Übung H. Lang, M. Ringkamp
geprüft 14

Geometrische numerische Integration (MB, ME, WING, BPT)
Vorlesung S. Leyendecker

Übung T. Wenger
geprüft 6 + 1 (WS 2014/2015)

Statik und Festigkeitslehre
(CBI, CE, ET, LSE, ME, MWT, IP, MT, CEN, BPT)

Vorlesung S. Leyendecker

Übung + Tutorium T. Gail, T. Wenger
D. Budday, T. Schlögl

T. Leitz, M. Ringkamp
geprüft 497
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Theoretische Dynamik II
(M, TM, MB, ME, CE, BPT, WING, Ph)

Vorlesung + Übung H. Lang
geprüft 12 + 2 (WS 2014/2015)

Rechnerunterstützte Produktentwicklung (RPE)
Versuch 6: Mehrkörpersimulation in Simulink

(MB, ME, WING) Praktikum T. Gail, T. Wenger
T. Leitz, M. Ringkamp

T. Schlögl
Teilnehmer 64

Wintersemester 2014/2015

Biomechanik der Bewegung (MT)

Vorlesung + Übung H. Lang
geprüft 35 + 14 (SS 2015)

Dynamik starrer Körper (MB, ME, WING, IP, BPT, CE)
Vorlesung S. Leyendecker

Übung + Tutorium D. Budday, O.T. Kosmas
T. Leitz, M. Ringkamp

N. Bach, T. Gail, T. Schlögl
geprüft 493 + 154 (SS 2015)

Mehrkörperdynamik (MB, ME, WING, TM, BPT, CE)
Vorlesung S. Leyendecker

Übung O.T. Kosmas
geprüft 39 + 6 (SS 2015)

Numerische Methoden in der Mechanik
(MB, ME, WING, TM, CE, BPT)

Vorlesung + Übung H. Lang
geprüft 40 + 15 (SS 2015)

Theoretische Dynamik I (MB, ME, WING, TM, BPT)

Vorlesung + Übung H. Lang, D. Budday
geprüft 22 + 14 (SS 2015)
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4.2 Dynamical laboratory – modeling, simulation and experiment

The dynamical laboratory – modeling, simulation and experiment adresses all students of the Technical
Faculty of the FAU Erlangen-Nuremberg. The aim of the practical course is to develop mathematical
models of fundamental dynamical systems to simulate them numerically and the results are compared
to measurements from the real mechanical system. Here, the students learn both the enormous possi-
bilities of computer based modeling and its limitations. The course contains one central programming
experiment and six experiments at the real existing objects, including the corresponding numerical
simulation.

Programming training

During the central programming training, the
students learn to deal with MATLAB and
Simulink. Here, prototypically, two exam-
ples are considered, the classical Lagrange
top in MATLAB and a distance controler in
Simulink. The Lagrange top exhibits non
trivial nutation while performing precession
around the vertical direction of gravitational
acceleration.The trajectory of the symmetry
axis might even build loops or cusps.

Beating pendulums

The experiment beating pendulums is about two heavy pendulums
that are connected with a soft spring. The theory allows a com-
plete analytical solution of the linearised equations of motion. As
an alternative, the solution trajectories might be gained by numer-
ical time integration. The results belonging to three typical initial
conditions are monitored at two coupled pendulums in the labo-
ratory. Especially, the dynamic beat phenomenon is inspected.

AB

φ0

Gyroscope

In the experiment gyroscope, the force-free
and heavy top are investigated. The exper-
imental setup constitutes a multibody system
that is modeled by Lagrangian mechanics and
simulated in MATLAB. In the laboratory, the
motion of the gyroscope is captured via angle
sensors. The measured trajectories are com-
pared to the simulation, which validates the
model.
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Ball balancer

The system ball balancer basically consists of a plate on which
a ball is free to roll. Two servomotors may incline the plate.
A camera situated above the plate detects the position of the
ball. The goal is to implement a regulator that controls the
motion of the ball. Preliminarily, the system is modeled. To
that end, the equations of motion of the ball and the differen-
tial equations of the motors are derived. The fundamentals of
control theory are inspected, and a PD-controler is created.
During the experiment, the controler is tested and improved.
Possible reasons for discrepancies between theory and prac-
tice are discussed.

Robot arm

The experiment robot arm serves as an introduction into
multibody dynamics. Here, the frequently used Denavit-
Hartenberg conventions are introduced, which are suit-
able to derive the kinematic equations systematically.
The transformation matrices are used in order to com-
pute the position and orientation of the robot arm for
arbitrary joint angles in space. Experiments with a vir-
tual model in MATLAB and a real robot arm illustrate
the practical use of the methods described.

Inverse pendulum

The experiment inverse pendulum concerns a swing-up-
maneuver of a pendulum on a slinging carriage from the
lower (stable) into the upper (unstable) static equilib-
rium position. Especially, the built-in incremental path
sensors are considered, which are explored by an oscil-
loscope. With the aid of MATLAB, a dynamic model
of the machine is solved structure-preservingly and com-
pared to measurements in order to identify an appropri-
ate friction model. A carriage motion that drives the
pendulum into the upper position is obtained by opti-
mal control algorithms. Finally, that motion is tested
on the real system.

PendelWinkelsensor

Schli!en

Servoumrichter

Bewegung
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Balancing robot
The experiment illustrates modeling, numerical compu-
tation and reality at the example of a Lego robot that
is self-balancing on two wheels. Preparatively, the stu-
dents are concerned with modeling the robot as a multi-
body system, the derivation of the equations of motion
and the basic knowledge in control theory. Then, they
perform simulations and compare the results to mea-
surements. Thereby, several aspects as the dynamic be-
haviour, stability, robustness, controlling accuracy and
possible sources of error are to be discussed.

4.3 Theses

PhD theses

• Michael Koch
Structure preserving simulation of non-smooth dynamics and optimal control

Master theses

• Katrin Ederer
Dynamische Simulation der Bewegungen eines biomechanischen Armmodells mit Prothese

• Daniel Glaas
Optimal feedback control for constrained mechanical systems

• Hannah Laube
Numerische Aufwandsbestimmung verschiedener Formulierungen der Bewegungsgleichung am
Beispiel des ebenen Kirchhoff-Balkens

• Uday Phutane
On the comparsion of different muscle model dynamics using varioational integrators

• Jochen Uhlig
Polyzentrische Knieprothesen – Kinematische Analyse und Modellierung als Mehrkörpersystem
mit Zwangsbedingungen

• Theresa Wenger
Variationelle Integratoren gemischter Ordnungen für dynamische Systeme mit gesplitteten Po-
tentialen

Project theses

• Markus Eisentraudt
Kreiseldynamik: Theorie, Simulation, Experiment

• Johann Penner
Charakterisierung von Reibmodellen zur Simulation eines inversen Pendels

• Dominik Reichl
Zur inversen Dynamik eines Roboterarms unter Einwirkung von Reibung
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• Johannes Rudolph
Passive shape undulations in underwater locomotion

Bachelor theses

• Theresa Ach
Simulation of a servo constrained rotary crane using variational integrators

• Jonas Fertsch
Experimentelle Analyse des NXTway-GS-Roboter

• Björn Hübner
Vergleich verschiedener Muskelmodelle

• Michael Jäger
Modellierung eines keltischen Wackelsteins unter Verwendung verschiedener Parametrisierungen
der Rotationsfreiheitsgrade

• Judith Probst
Modellierung und Optimierung der Abrollbewegung eines Mehrkörpersystems

• Miriam Scharnagel
Modellbildung und inverse Dynamik eines Roboterarms

• Cosima Schellenberger
Viskoelastische Cosserat-Balken aus Kelvin-Voigt-Material zur numerischen Simulation von
Sehnen - Vergleich mit dem 3D-Kontinuum

• Anja Thielecke
Numerische Simulation der Dynamik eines Windspiels

4.4 Seminar for mechanics

together with the Chair of Applied Mechanics LTM

02.02.2015 Jaroslav Vondřejc
Faculty of Applied Sciences, University of West Bohemia, Plzen, Czech Rebublic
FFT-based Galerkin method for a reliable determination of homogenized material
properties

19.02.2015 Lukas Allabar
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Structure preserving simulation of a planar slider crank with translational joint clearance

19.02.2015 Daniel Glaas
Master thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Optimal feedback control for constrained mechanical systems

19.02.2015 Björn Hübner
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Vergleich verschiedener Muskelmodelle
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19.02.2015 Hannah Laube
Project- und Master thesis, Chair of Applied Dynamics, University of Erlangen-
Nuremberg
Numerische Aufwandsbestimmung verschiedener Formulierungen der Bewegungsgle-
ichung am Beispiel des ebenen Kirchhoff-Balkens

19.02.2015 Judith Probst
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Modellierung und Optimierung der Abrollbewegung eines Mehrkrpersystems

16.03.2015 Stephan Rudykh
Department of Aerospace Engineering, Technion – Institute of Technology, Israel
Micromechanics of soft dielectric elastomers and magnetorheological elastomers

16.04.2015 Miriam Scharnagel
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Modellbildung und inverse Dynamik eines Roboterarms

16.04.2015 Jochen Uhlig
Master thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Polyzentrische Knieprothesen – Kinematische Analyse und Modellierung als
Mehrkörpersystem mit Zwangsbedingungen

27.04.2015 Kateryna Plaksiy
Department of Applied Mathematics, NTI, Kharkiv Polytechnic Institute, Ukraine
Dynamics of nonlinear dissipative systems in the vicinity of resonance

20.05.2015 Johannes Rudolph
Project thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Passive shape undulations in underwater locomotion

15.06.2015 Andrew McBride
Centre for Research in Computational and Applied Mechanics, University of Cape Town,
South Africa
Computational and theoretical aspects of a grain-boundary model that accounts for grain
misorientation and grain-boundary orientation

22.06.2015 Valery Levitas
Departments of Aerospace Engineering, Iowa State University, USA
Interaction between phase transformations and dislocations at the nanoscale: Phase field
approach

20.07.2015 Anja Thielecke
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Numerische Simulation der Dynamik eines Windspiels

27.08.2015 Dominik Reichl
Project thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Zur inversen Dynamik eines Roboterarms unter Einwirkung von Reibung
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02.09.2015 Theresa Ach
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Simulation of a servo constrained rotary crane using variational integrators

24.09.2015 Michael Jäger
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Modellierung eines keltischen Wackelsteins unter Verwendung verschiedener
Parametrisierungen der Rotationsfreiheitsgrade

29.09.2015 Michael Koch
PhD thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Structure preserving simulation of non-smooth dynamics and optimal control

07.10.2015 Johann Penner
Project thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Charakterisierung von Reibmodellen zur Simulation eines inversen Pendels

10.11.2015 Katrin Ederer
Master thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Dynamische Simulation der Bewegungen eines biomechanischen Armmodells mit
Prothese

10.11.2015 Jonas Fertsch
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Experimentelle Analyse des NXTway-GS-Roboter

20.11.2015 Uday Phuthane
Master thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
On the comparison of different muscle model dynamics using variational integrators

30.11.2015 Krishnendu Haldar
Institute of Mechanics, TU Dortmund
Discrete Symmetry and Modeling of Magnetic Shape Memory Alloys

03.12.2015 Markus Eisentraudt
Project thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Kreiseldynamik: Theorie, Simulation, Experiment

4.5 Editorial activities

Advisory and editorial board memberships Since January 2014, Sigrid Leyendecker is a member of
the advisory board of the scientific journal Multibody System Dynamics, Springer.
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4.6 Long night of science

Eintrittspreise

On October 24, 2015, the ‘Long night of science’ (‘Lange Nacht der Wissenschaften’) took place
at many scientific institutions spread around the cities of Nuremberg, Erlangen, and Fuerth for the
seventh time since 2003. During the early night between 6 p.m. and 1 a.m., interested people had the
opportunity to inform themselves at universities, non-university research institutes, companies and
other institutions about actual topics in research and development. The Chair of Applied Dynamics
participated and showed interesting experiments in its laboratories, such as the beating phenomenon
for pendulums, the conservation of angular momentum, optimal control for an inverted pendulum, a
self-balancing robot and a Carrera race course (the exhibited posters are presented on the following
pages). People had the chance to execute most of the mechanical experiments on their own, e.g. to
feel forces, torques, angular velocity and acceleration experienced on a chair. Some exhibits were well
suited for children such as to try to ‘invert’ a pendulum simply by controlling with a joystick without
the help of numerical control algorithms. The atmosphere was very nice and the resonance extremely
positive, such that the LTD is looking forward to attend the next ‘Long night of science’ in 2017.
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5.1 Reviewed journal publications

1. D. Budday, S. Leyendecker, and H. van den Bedem. Geometric analysis characterizes molecular
rigidity in generic and non-generic protein configurations. Journal of the Mechanics and Physics
of Solids, Vol. 83, pp. 736-47, 2015.

2. F. Demoures, F. Gay-Balmaz, S. Leyendecker, S. Ober-Blöbaum, T.S. Ratiu, and Y. Weinand.
Discrete variational Lie group formulation of geometrically exact beam dynamics. Numerische
Mathematik, Vol. 130, pp. 73-123, 2015.

3. T. Schlögl, and S. Leyendecker. Electrostatic-viscoelastic finite element model of dielectric actu-
ators. Comput. Methods Appl. Mech. Engrg., accepted for publication, 2015.

5.2 Reviewed proceeding publications

1. T. Gail, R. Hoffmann, M. Miezal, G. Bleser, and S. Leyendecker. Towards bridging the gap
between motion capturing and biomechanical optimal control simulations’. In Proceedings of the
ECCOMAS Thematic Conference on Multibody Dynamics, 12 pages, Barcelona, Spain, 29 June
- 2 July 2015.

2. M.W. Koch and S. Leyendecker. Structure preserving optimal control of a 3d-dimensional upright
gait. In Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, 12 pages,
Barcelona, Spain, 29 June - 2 July 2015.

3. T. Gail, R. Hoffmann, M. Miezal, G. Bleser, and S. Leyendecker. Towards bridging the gap
between motion capturing and biomechanical optimal control simulations. In Proceedings of the
ECCOMAS Thematic Conference on Multibody Dynamics, 12 pages, Barcelona, Spain, 29 June
- 2 July 2015.

4. H. Lang, H. Laube, and S. Leyendecker. Various multibody dynamic models for the description
of plane Kirchhoff rods. Proceedings of the ECCOMAS Thematic Conference on Multibody
Dynamics, 12 pages, Barcelona, Spain, 29 June - 2 July 2015.

5.3 Talks

1. S. Leyendecker. A discrete variational approach to hybrid dynamical systems and optimal control.
Invited lecture, Institut für Robotik, Johannes Kepler Universitt Linz, Linz, Austria, 11 February
2015.

2. S. Leyendecker. A discrete variational approach to hybrid dynamical systems and optimal control.
Invited lecture, Department of Aerospace and Mechanical Engineering, University of Southern
California, Los Angeles, California, 12 March 2015.

3. S. Leyendecker. A discrete variational approach to hybrid dynamical systems and optimal control.
Invited lecture, Mechanics and Computation, Stanford University, Palo Alto, California, 19
March 2015.

4. D. Budday, S. Leyendecker, and H.van den Bedem. A geometric approach to characterize rigidity
in proteins. PAMM, Vol. 15, pp. 89-90, GAMM Annual Meeting, Lecce, Italy, 23-27 March 2015.
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5. M. Ringkamp, S. Ober-Blöbaum, and S. Leyendecker. Relaxing mixed integer optimal control
problems using a time transformation’. PAMM, Vol. 15, pp. 27-30, GAMM Annual Meeting,
Lecce, Italy, 23-27 March 2015.

6. T. Schlögl, and S. Leyendecker. On electrostatic-viscoelastic simulation of dielectric actuators .
PAMM, Vol. 15, pp. 421-422, GAMM Annual Meeting, Lecce, Italy, 23-27 March 2015.

7. S. Leyendecker, M. Koch, M. Ringkamp, and S. Ober-Blöbaum. Structure preserving simu-
lation of hybrid dynamical systems and optimal control. 3rd German-Japanese Workshop on
Computational Mechanics, Munich, Germany, 30-31 March 2015.

8. T. Schlögl, and S. Leyendecker. Modelling and simulation of dielectric elastomer actuated multi-
body systems. EuroEAP, Poster, Tallinn, Estonia, 9-10 June, 2015.

9. D. Budday, S. Leyendecker, and H. van den Bedem. A geometric approach to characterize rigidity
of biomolecules. EMI Conference, Stanford University, California, USA, 16-19 June 2015.

10. D. Budday, S. Leyendecker, and H. van den Bedem. Protein conformational analysis using kino-
geometric constraints. Invited lecture, Fraser Lab at UCSF, San Francisco, California, USA, 22
June 2015.

11. H. Lang, H. Laube, and S. Leyendecker. Various multibody dynamic models for the description
of plane Kirchhoff rods. ECCOMAS Thematic Conference on Multibody Dynamics, Barceona,
Spain, 29 June - 2 July 2015.

12. M. Ringkamp, S. Ober-Blöbaum, and S. Leyendecker. Relaxing mixed integer optimal control
problems using a time transformation. ECCOMAS Thematic Conference on Multibody Dynam-
ics, Barceona, Spain, 29 June - 2 July 2015.

13. T. Gail, S. Leyendecker, and S. Ober-Blöbaum. A numerical convergence study for constrained
variational multirate integration. 3rd ECCOMAS Young Investigators Conference, Aachen, Ger-
many, 20-23 July 2015.

14. S. Leyendecker. On the simulation and control of micro- and macroscopic motion in
(electro-)mechanical systems. Invited lecture, 7th EAM Symposium, Cluster of Excellence –
Engineering of Advanced Materials, Bad Staffelstein, Germany, 23-25 November 2015.
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Visit of the Bergkirchweih 26.05.2015

Student summer party 07.07.2015
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On the Wiesent 28.08.2015
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PhD defense Michael Koch 29.09.2015

Nikolaus hike 04.12.2015
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Christmas party together with LTM 10.12.2015
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