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2 Preface

1 Preface

This report summarises the activities in research and teaching of the Chair of Applied Dynamics
at the University of Erlangen-Nuremberg between January and December 2016. Part of LTD is the
Independent Junior Research Group in the DFG Emmy Noether Programme ‘Simulation and optimal
control of the dynamics of multibody systems in biomechanics and robotics’ that has been at the
University of Kaiserslautern from May 2009 to March 2011.

The main direction of research is computational dynamics and optimal control. Efficient technologies
for dynamical and optimal control simulations are developed, facing contemporary life science
and engineering problems. The problems under investigation come from biomechanics (natural or
impaired human movements and athletic’s high performance, human hand grasping model) and
robot dynamics (industrial, spatial and medical) as well as the optimisation and optimal control of
their dynamics. Further topics are the modelling and simulation of biological and artificial muscles
(as electromechanically coupled problems), multiscale and multirate systems with dynamics on
various time scales (examples in astrodynamics as well as on atomistic level), higher order variational
integrators, Lie group methods and viscous beam formulations as well as research on structural
rigidity and conformational analysis of macromolecules. The development of numerical methods is
likewise important as the modelling of the nonlinear systems, whereby the formulation of variational
principles plays an important role on the levels of dynamic modeling, optimal control as well as
numerical approximation, yielding a holistic approach.
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2 Team

2 Team

chair holder
Prof. Dr.-Ing. habil. Sigrid Leyendecker

technical staff
Beate Hegen
Dipl.-Ing. (FH) Natalia Kondratieva
Sven Lässig

academic scientist
Dr. rer. nat. Holger Lang

postdoc
Dr.-Ing. Ramona Hoffmann until 31.07.2016

scientific staff
M.Sc. Dominik Budday
M.Sc. Daniel Glaas
Dipl.-Ing. Tobias Gail
Dipl.-Ing. Thomas Leitz
M.Sc. Johann Penner from 01.12.2016
M.Sc. Uday Phutane from 01.01.2016
Dipl.-Math. Maik Ringkamp until 31.12.2016
Dipl.-Ing. Tristan Schlögl
M.Sc. Theresa Wenger

students
Tobias Bader Dominik Bartels
Daniel Brechter Lewin Butazzko
Emre Cicek Simon Dentler
David Elz Sebastian Falk
Michèle Gleser Alexander Greiner
Johannes Henneberg Alexander Hetzner
Johanna Hilsen Michael Jäger
Simone Kellermann Ibrahim Kilic
Kilian Kleeberger Johannes Koch
Björn König Moritz Manert
Pirmin Molz Kumar Paras
Johann Penner Felix Potrykus
Roland Purucker Uta Rösel
Sebastian Scheiterer Selina Scherzer
Elisabeth Schmidt Patrik Steck
Artur Usbek Sarah Walser
Henrik Wigger Thomas Will
Jinyu Zhang Wuyang Zhao

Student assistants are mainly active as tutors for young students in basic and advanced lectures at the
Bachelor and Master level. Their contribution to high quality teaching is indispensable, thus financial
support from various funding sources is gratefully acknowledged.
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3 Research

3 Research

3.1 Emmy Noether Independent Junior Research Group

The Emmy Noether Programme by the German Research Foundation (DFG) supports young re-
searchers in achieving independence at an early stage of their scientific careers. Between May 2009
and March 2011, the Emmy Noether Independent Junior Research Group ‘Simulation and optimal
control of the dynamics of multibody systems in biomechanics and robotics’ has been affiliated with the
University of Kaiserslautern. The group has been transferred to the University of Erlangen-Nuremberg
in April 2011 and has been part of the Chair of Applied Dynamics until the end of 2016. The project
resulted in 18 peer-reviewed paper publications, 35 contributions to national and international con-
ferences, three PhD theses (completed in 2014, 2015 and to be completed in 2017) and 6 student
theses.

3.2 Bionicum

The Bavarian Environment Agency (LfU) (being the central authority for environmental protection
and nature conservation, geology and water resources management) has established the centre for
bionics ‘bionicum’ in 2012, consisting of a visitors centre in the Tiergarten of the City of Nuremberg
with a permanent exhibition and three research projects with a total financial volume of eight million
Euro. One of the projects investigates artificial muscles. The modelling and simulation of the dielectric
elastomer actors is developed at the LTD while the Institute for Factory Automation and Production
Systems (FAPS) works on the fabrication. To identify material parameters that are necessary for the
simulation and optimisation of artificial muscles, a dielectric elastomer test bench is set up at the LTD
laboratory. This high voltage test bench allows for measuring artificial muscle forces and strain effects
as well as breakdown field strengths. Moreover, electric power supply and control boards for artificial
muscles that are developed at the FAPS can be tested and evaluated.

3.3 GAMM and GACM

Sigrid Leyendecker has been elected as an Executive Council Members of the German Association for
Computational Mechanics (GACM) for the period of January 2013 to December 2016. The objective
of GACM is to stimulate and promote education, research and practice in computational mechanics
and computational methods in applied sciences, to foster the interchange of ideas among various fields
contributing to computational mechanics, and to provide forums and meetings for the dissemination
of knowledge about computational mechanics in Germany.
In February 2014, she has further been elected as a member of the Managing Board of the Interna-
tional Association of Applied Mathematics and Mechanics (GAMM) for two years. GAMM promotes
scientific development in all areas of applied mathematics and mechanics, e.g. via the organisation of
workshops, in particular for younger scientists, and the international scientific annual GAMM meeting.

3.4 SPP 1886

The German Research Foundation (DFG) has established the Priority Programme ‘Polymorphic un-
certainty modelling for the numerical design of structures – SPP 1886’ coordinated by Professor
Dr.-Ing. Michael Kaliske from Technische Universität Dresden. Sigrid Leyendecker is part of the pro-
gramme committee and principal investigator of the project ‘Dynamic analysis of prosthetic structures
with polymorphic uncertainty’.
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3.5 Cooperation partners

Besides numerous worldwide cooperations with scientists in academia, the LTD is in contact with other
institutions and industrial partners. The LTD cooperates with the Fraunhofer Institute for Industrial
and Economical Mathematics (ITWM) in Kaiserslautern, Germany on common interests like nonlin-
ear rod dynamics and biomechanics, in particular concerning the development of a human hand model
and the simulation of grasping. In this context, we also work together with the Chalmers University
of Technology in Gothenburg, Sweden. A cooperation with the Junior research group wearHEALTH
and AG Augmented Vision, Department Computer Science, TU Kaiserslautern and German Research
Center for Artificial Intelligence (DFKI), aims at bridging the gap between motion capturing and
biomechanical optimal control simulations. In collaboration with the Stanford Synchrotron Radiation
Lightsource (SSRL) in Palo Alto, California, the LTD does research on structural rigidity and con-
formational analysis of biomolecules. A strong cooperation on topics ranging from the simulation of
multirate dynamics, higher order variational methods to hybrid optimal control problems is going on
with the Department of Engineering Science at the University of Oxford, England.

3.6 Hardware

The new Celsius R940 workstation with two Xeon CPUs, NVIDIA Tesla K40 graphic card and Kepler
GPU allows the parallel computation of large and complex problems, and the LTD is having a new
HP DL380 Gen9 server.

3.7 Scientific and academic honors

For the contribution ‘Dynamic simulation of dielectric elastomer actuated multibody systems’ at the
ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS),
Stowe, VT, USA, 28-30 September, 2016, Tristan Schlögl received the Student Best Paper Award.
Tristan Schlögl took the first place for his excercise ‘Übungen zur Dynamik starrer Körper’ in the
category ÜP20 as part of the teaching evaluation of the Wintersemester 2015/2016.
Holger Lang took the second place for his lecture ‘Mehrkörperdynamik’ in the category VW10 as part
of the Teaching Evaluation of the Wintersemester 2015/2016.

3.8 Scientific reports

The following pages present a short overview on ongoing research projects pursued at the Chair of
Applied Dynamics. These are partly financed by third-party funding (German Research Foundation
(DFG), Bavarian Environment Agency (LfU)) and in addition by the core support of the university.

Research topics

A generalised Fourier method to solve the initial boundary value problem for free vibrating viscoelastic
beam models
Holger Lang, Sigrid Leyendecker

On optical data-guided optimal control simulations of human motion
Ramona Hoffmann, Bertram Taetz, Markus Miezal, Gabriele Bleser, Sigrid Leyendecker

Frustration-guided motion planning reveals conformational transitions in proteins
Dominik Budday, Rasmus Fonseca, Sigrid Leyendecker, Henry van den Bedem
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Variational multirate integration in multibody dynamics
Tobias Gail, Sina Ober-Blöbaum, Sigrid Leyendecker

Optimal feedback control for constrained mechanical systems
Daniel Glaas, Sigrid Leyendecker

Towards higher order multi-symplectic Lie-group variational integrators for geometrically exact beam
dynamics – avoidance of shear locking
Thomas Leitz, Sigrid Leyendecker

Kinematic validation of the human thumb model
Uday D. Phutane, Michael Roller, Staffan Björkenstam, Sigrid Leyendecker

Time transformed mixed integer optimal control problems with impacts
Maik Ringkamp, Sina Ober-Blöbaum, Sigrid Leyendecker

Comparison of finite element models for dielectric elastomers concerning volumetric locking
Tristan Schlögl, Sigrid Leyendecker

Variational integrators of mixed order for systems acting on multiple time scales – The relation of
constrained Galerkin variational integrators to Runge-Kutta methods
Theresa Wenger, Sina Ober-Blöbaum, Sigrid Leyendecker
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A generalised Fourier method to solve the initial boundary value problem
for free vibrating viscoelastic beam models

Holger Lang, Sigrid Leyendecker

Fourier analysis is an extremely powerful and well-established tool for analysing oscillations of un-
damped linear mechanical structures, especially for beam structures [1, 2]. We extend this method
to linear beam structures with viscoelastic damping mechanisms of Kelvin-Voigt kind, where the vis-
cous stress contribution is proportional to the strain rate. In the following, we sketch the proposed
generalised Fourier method.
The dynamic motion of a homogeneous and uniform axial beam with Kelvin-Voigt viscoelasticity can
be described by its normal displacement u(x, t), a real valued scalar function of the undeformed
arclength parameter 0 ≤ x ≤ 1 and the time t ∈ R. The equation of motion can be formulated as

ü = u′′ + 2ζu̇′′, where 0 ≤ x ≤ 1, t ∈ R (1)

with the viscosity ζ ≥ 0. Here, ′ = ∂/∂x and ˙ = ∂/∂t. For a derivation of (1), which is formulated
in non-dimensional form, see [4]. The internal normal force (or normal stress in the non-dimensional
setting) is given by N = u′ + 2ζu̇′, where u′ is the normal strain and u̇′ is its rate. We impose the
following initial resp. boundary conditions

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) resp. u(0, t) ≡ 0, u′(1, t) ≡ 0, (2)

where 0 ≤ t and 0 < x < 1. In (2), the initial positions u0(x) and initial velocities u̇0(x) are
prescribed functions of x. The boundary conditions in (2) belong to those of a cantilever. Note that
u′(1, t) ≡ 0 implies u̇′(1, t) ≡ 0. Therefore, the normal force at the right free end vanishes identically,
i.e. N(1, t) ≡ 0.
As demonstrated in [3], it is straightforward to see that real eigensolutions of (1), subjected to the
boundary conditions (2), take the form

un(x, t) = fn(t)Un(x), where Un(x) =
√

2 sin(ωnx), ωn =
(
n+

1

2

)
π (3)

and

fn(t) = exp
(
−ω2

nζt
)




an cos
(
ωn
√

1− ω2
nζ

2 t
)

+ bn sin
(
ωn
√

1− ω2
nζ

2 t
)

if ζ < 1/ωn
an + bnt if ζ = 1/ωn
an exp

(
ωn
√
ω2
nζ

2 − 1 t
)

+ bn exp
(
− ωn

√
ω2
nζ

2 − 1 t
)

if ζ > 1/ωn

(4)

for each n = 0, 1, 2, . . .. In (3), the number ωn denotes the n-th undamped eigenfrequency. Its
corresponding mode shape function is Un(x), see [1]. The reciprocal 1/ωn is the critical viscosity of
the n-th eigenmode of the beam, the total critical viscosity ζ? is defined as the critical viscosity for
the zeroth eigenmode, i.e. ζ? = 1/ω0 = 2/π, see [3, 4].
We assume, that the solution u(x, t) in (1) with (2) can be expanded into a generalised Fourier series
of the form

u(x, t) =
∞∑

n=0

fn(t)Un(x). (5)

We let 〈v, w〉 =
∫ 1

0 v(x)w(x) dx for square integrable functions v = v(x) and w = w(x) on [0, 1].
Due to the orthonormality relationship 〈Un, Um〉 = δnm for n,m = 0, 1, 2, . . ., the well-known Fourier
expansions u0(x) =

∑∞
n=0〈Un, u0〉Un(x) and u̇0(x) =

∑∞
n=0〈Un, u̇0〉Un(x) hold on [0, 1]. Now, if (5)

holds, it can be shown that the Fourier coefficients an and bn in (4) must take the following forms.
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If ζ < 1/ωn,

an = 〈Un, u0〉, bn =
1

ωn

(
〈Un, u̇0〉+ anω

2
nζ
)√

1− ω2
nζ

2. (6)

If ζ = 1/ωn,
an = 〈Un, u0〉, bn = 〈Un, u̇0〉+ anω

2
nζ. (7)

If ζ > 1/ωn,

an =
1

2ωn
√
ω2
nζ

2 − 1

[
ωn

(√
ω2
nζ

2 − 1 + ωnζ
)
〈Un, u0〉+ 〈Un, u̇0〉

]

bn =
1

2ωn
√
ω2
nζ

2 − 1

[
ωn

(√
ω2
nζ

2 − 1− ωnζ
)
〈Un, u0〉 − 〈Un, u̇0〉

] . (8)

Example We consider the initial data u0(x) = x and u̇0(x) = 0, where 0 < x < 1. Then, we have
〈Un, u0〉 = 4

√
2 (−1)n/π2/(2n+ 1)2 and 〈Un, u̇0〉 = 0 for n = 0, 1, 2, . . . by induction, similarly derived

as in [2]. Figure 1 displays the Fourier resp. Finite Element solution for a sufficiently large number of
elements. Both agree, which indicates the validity of the proposed method.

Figure 1: Solution of the IVBP (1), (2). Left: Displacement u(1, t). Right: Normal force N(0, t).
Colored: Fourier solution according to (5) together with (6), (7) and (8). Black: Finite
Element solution according to [4, 5]

The extension of the proposed Fourier method to bending beams of Kelvin-Voigt type, convergence
issues and the quantitative contribution of each un(x, t) to (5) are topics of future research.

References

[1] R.R. Craig and A.J. Kurdila. Fundamentals of structural mechanics. John Wiley & Sons, 2006.

[2] H. Heuser. Funktionalanalysis. Teubner, 1998.

[3] H. Lang, S. Leyendecker, and J. Linn. Numerical experiments for viscoelastic Cosserat rods with
Kelvin-Voigt damping. Proceedings of the ECCOMAS Thematic Conference on Multibody Dy-
namics, pp. 453-462, July 1-4, Zagreb, Croatia, 2013.

[4] H. Lang and S. Leyendecker. Complex frequency response for linear beams with Kelvin-Voigt
viscoelastic material. Proceedings of the 4th Joint International Conference on Multibody System
Dynamics, pp. 282-301, May 29-June 2, Montréal, Canada, 2016.

[5] H.R. Schwarz. Finite element methods. Teubner, 1991.
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On optical data-guided optimal control simulations of human motion

Ramona Hoffmann, Bertram Taetz1, Markus Miezal1, Gabriele Bleser1, Sigrid Leyendecker

This work addresses the synergistic fusion of optimal control simulations and marker-based optical
measurements of human motion. The latter is a widespread capturing technology in biomechanics and
movement science [1]. In the context of optimal control simulations using DMOCC [2], the idea is to
improve the computational performance by using a realistic initial guess and to increase the realism
of the simulated motion through data-guiding. In the context of motion capturing, the idea is to use
biomechanical simulations in order to maintain accurate capturings also with reduced measurement
frequencies and points. This would greatly improve the usability of such systems in terms of setup
time and wearing comfort. In this work, we investigate different methods for combining physical laws,
3D marker positions obtained from the optical system, and physiologically motivated objectives in an
optimal control framework. Moreover, we explore the potential of obtaining reasonable results — in
terms of motion trajectories and torques that are close to reference obtained from using all available
information — with a reduced measurement frequency and a reduced number of markers. As an
extension to our previous work [3], the tests are performed on a human steering and throwing motion,
where a human arm was captured with seven retroreflective markers at 120 Hz. We consider two
specific scenarios: a steering manoeuvre as a short and slow motion and a faster, more complex and
far reaching motion, i.e. a throwing motion. Based on these scenarios, we investigate in particular the
following aspects:

I. How should the measured marker positions be incorporated into the optimisation, i.e., in the
objective function as so called soft constraints or as hard constraints to the optimisation?

II. What are the effects of a reduced measurement update rate or a reduced number of marker
points used in the optimal control simulation, how are these effects attenuated by combining
the measurements with a physiologically motivated cost function and which function would be
best suited? Effects refer here to the deviation of the simulated motion and torques from the
simulation results when using all available measurements.

Figure 1: Human arm model with marker
positions used for optimal con-
trol simulations. The marker la-
bels are introduced in Figure 2

Human arm model and measurement For the
simulation, the human arm is modelled as a multi-
body system consisting of three rigid bodies. A
cylindrical upper arm is fixed in space by a spheri-
cal joint representing the shoulder. The elbow and
wrist are modelled as cardan joints connecting the
cylindrical forearm to the upper arm and the paral-
lelepiped shaped hand to the forearm, respectively
(cf. Figure 1). The bodies’ dimensions and rota-
tion axes are personalised for the subject and the
optical marker positions, relative to the arm seg-
ments, are computed from the measurement data
via an inverse kinematics optimisation. Thus, the
exact definition of the personalised model is already
a result from the measured data.

1Junior research group wearHEALTH, Department Computer Science, University of Kaiserslautern, Germany
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Figure 2: Measurement setup and optical
marker protocol with marker la-
bels. Note, for future exper-
iments, we also captured iner-
tial measurements at 120 Hz
from three inertial measure-
ment units (IMUs) attached to
the upper-, forearm and hand.
These IMUs, which are mounted
in special casings with tiny
markers on top, are also visible
in the figure, however, the data
is not used in the present study.

Results and discussion Concerning the question (I),
the inclusion of the measurements as soft constraints
by minimising the residual total deviation between
measured and simulated marker positions in the ob-
jective function turns out to be computationally way
more inefficient than their inclusion as hard con-
straints. Also, considering that it is a priori known
that there are differences between the real motion,
the measurement (having errors including those due
to soft tissue artefacts) and the simulation (model as-
sumptions on morphology, physiology and actuation
as well as discretisation errors), indicates that — in-
stead of using the soft constraints approach — it is
more promising to use the measurements as guiding
points and to define an environment around them,
where a solution of a biomechanical simulation with
a physiologically motivated objective criterion is to be
found.
Addressing aspect (II), from the investigated objective
functions in the steering example, minimising torque
change shows the most realistic and natural results
and the highest stability with respect to the reduction
of the measurement frequency. The second example
investigates a throwing motion, which is a far reach-
ing and fast motion compared to the steering motion
investigated before. Here, neglecting markers leads to
a larger number of failed simulations.
Our results show, that a significant reduction of ex-
ploited measurements still provides feasible simulation
results in our proposed method, given that the physio-
logically motivated objective reflects the actual move-
ment. Further, it turns out that neglecting markers
close to the shoulder has less influence on the simula-
tion results than neglecting markers close to the hand.

References
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528, 2010.
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Frustration-guided motion planning reveals conformational transitions in proteins

Dominik Budday, Rasmus Fonseca2, Sigrid Leyendecker, Henry van den Bedem3

Alternative, non-native contacts play a critical role in conformational dynamics by stabilizing native
states and redirecting collective motions, embodied by the principle of minimal frustration. However,
frustration also severely hinders fast exploration of conformational space. Here, we exploit frustra-
tion to guide conformational transitions by introducing dynamic, Clash-avoiding Constraints (dCC)
in a bidirectional, rapidly-exploring random tree (RRT), which allows us to identify transitions be-
tween states across scales, from individual side-chains to large multi-domain proteins. Simulating how
proteins transition between substates will help us understand the molecular mechanisms of function
[1].
We coupled dCC-RRT to our kino-geometric sampler (KGS), which encodes a protein as a kinematic
linkage with backbone and side-chain dihedral angles as degrees of freedom [2, 3]. Non-covalent
hydrogen bonds and non-native contacts constitute a dynamic set of holonomic constraints that require
collective motions of the degrees of freedom, which we compute directly in the constraint manifold.
Whenever two atoms are in close contact, we introduce a temporary, interatomic constraint that lets
atoms slide past each other (http://bit.ly/1WZxhcJ). The new constraint instantaneously alters the
constraint manifold, redirecting collective motions to navigate the rugged energy landscape (Fig. 1
left). While linkages with few degrees of freedom would suffer almost direct immobility with this
procedure, the high dimensional conformation space of a protein can accommodate a number of clash-
constraints and still be moveable. We augmented a bidirectional RRT [4] growing from an initial and
a target conformation to connect both states with iteratively updated subsets we call moving fronts
(mf) to efficiently select samples during exploration.

Figure 1: dCC-RRT navigates a rugged energy landscape (left) to connect an initial and a target
state by introducing dynamic, Clash-avoiding Constraints (dCC). Clash constraints maintain
favorable energies during the transition (right).

We first applied dCC-RRT to a test set of eight proteins with, on average, 7.5Å heavy-atom root mean
squared distance (RMSD) between their two substates. Our clash-free pathways reduced the heavy-
atom RMSD by 72% on average, outperforming peer methods. Clash constraints ensured favorable
energy levels throughout the transition (Fig. 1 right), while a remaining energy barrier reflected the
remaining distance between the two closest identified conformations. We then applied dCC-RRT to
human cyclophilin A (cypA), whose active site conformational changes are characterized by small-
scale changes of side-chains [5, 6], out of range for other, less detailed methods. We found that areas

2Department of Molecular and Cellular Physiology, Stanford University, California, Menlo Park, USA
3Division of Biosciences, SLAC National Accelerator Laboratory, Stanford University, California, Menlo Park, USA
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Figure 2: Residue network (graphs left, red residues right) in cypA, connecting the active site at R55
to a second, non-canonical binding site 25 away. Blue-colored nodes show similar exchange
rates in CPMG experiments6. Gray nodes: no exchange measured.

enriched in non-native contacts in dCC-RRT transition pathways form a previously uncharacterized,
spatially contiguous network of residues (Fig. 2). Strikingly, the network connects the active site of
cypA to a recently proposed, non-canonical capsid binding site 25Å away [7]. Our network extends
and agrees with those we found using multi-temperature crystallography [6] and provides a structural
basis for CPMG data [8], validating the ability of dCC-RRT to reveal detailed, all-atom molecular
mechanisms for small and large amplitude motions.
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Variational multirate integration in multibody dynamics

Tobias Gail, Sina Ober-Blöbaum1, Sigrid Leyendecker

Mechanical systems with dynamics on different time scales have contradicting requirements on the
integration method. On the one hand, for stable integration of the fast dynamics, tiny time step
sizes are needed. On the other hand, for the slow dynamics, large time steps are accurate enough.
Both demands are fulfilled in the framework known as variational multirate integration [2], where two
time grids are used, to integrate the system’s dynamics. Here, we focus on the simulation of rigid
multi-body systems with dynamics on different time scales. The description of the rigid body uses the
so called director formulation [1]. The rigid bodies are connected with joints described by holonomic
constraints which have to be considered on different time scales, because they connect bodies with
dynamics on different time scales. A variation of the null space method for multirate integration is
introduced and the effect on the number of unknowns is investigated.
Let a mechanical system containing slow and fast dynamics be described by a Lagrangian with config-
uration vector q ∈ Q with Q a manifold and velocity vector q̇ ∈ TqQ being in the tangent space TqQ at
q. The motion is constrained by the m-dimensional vector valued function of holonomic, skleronomic
constraints requiring g(q) = 0. To model the slow and fast dynamics, we split the configuration into
ns slow variables qs and nf fast variables qf and split the potential energy into a slow potential V (q)
and a fast potential W (qf ). The action is the time integral of the Lagrangian consisting of the differ-
ence of the kinetic energy T and the split potential V + W and the constraints times the Lagrange
multipliers λ. Via Hamilton’s principle requiring stationarity of the action, the constrained multirate
Euler-Lagrange equations are derived.

d

dt

∂T

∂q̇s
+
∂V

∂qs
−
(
∂g

∂qs

)T
· λ = 0

d

dt

∂T

∂q̇f
+
∂V

∂qf
+
∂W

∂qf
−
(
∂g

∂qf

)T
· λ = 0 g(q) = 0 (1)

In the discrete setting, we introduce two time grids, a macro grid with the macro time step ∆T and a
micro grid with the micro time step ∆t, see Figure 1. The slow variables live on the macro time grid,
the fast variables on the micro time grid, and the Lagrange multipliers on both time grids. The action
in one macro time interval is approximated by the discrete Lagrangian and discrete constraints. The
action sum over all time steps approximates the action integral. Via a discrete form of Hamilton’s
principle, the discrete constrained variational multirate Euler-Lagrange equations are derived.
In the director formulation, the position of the mass middle point of the rigid body is denoted by the
vector ϕ ∈ R3. The rotational degrees of freedom are described by an orthonormal vector triad, the
so called directors dI ∈ R3 with I = 1, 2, 3. Then, the position and orientation of the rigid body are
q = [ϕ, d1, d2, d3]T . The configuration of each body belongs either to the slow or to the fast part of
the configuration vector. The directors give rise to six so called internal constraints gint(q) = 0 which
ensure the orthonormality of the director triad. The rigid bodies are connected by joints, they are
described by the vector valued function of the external constraints gext(q) = 0. The constraints of
the system then are g(q) = [gint(q), gext(q)]

T . The constraints can be distinguished into purely slow,
coupling (slow-fast), and purely fast constraints g = [gs, gsf , gf ]T . Then, the number of constraints

1Department of Engineering Science, University of Oxford, England

Figure 1: Macro and micro time grid with p micro intervals per macro interval
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∆t fixed Lagrange multiplier method null space method

[0 ∆t] p = 1 ns + nf +ms +msf +mf ns + nf +msf

[0 p∆t] p > 1 ns +ms + p(nf +msf +mf ) ns + p(nf +msf )

[0 tN ] p > 1
tN
∆t

(
1

p
(ns +ms) +

(
nf +msf +mf

)) tN
∆t

(
1

p
ns +

(
nf +msf

))

Table 1: Number of unknowns

qs

qf

g

Figure 2: Chain of four rigid
bodies
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m can be split into m = ms +msf +mf with ms the dimension of the slow, msf of the coupling and
mf of the fast constraints. Due to the presence of λ in (1), the number of unknowns in the system is
great than the degrees of freedom of the system. To decrease the number of unknowns, a projection
with a so called null space matrix P (q) is performed where G(q) · P (q) = 0 with G = ∂g(q)

∂q . The null

space matrix can be partitioned to eliminate only certain constraint forces GT · λ. Here, the purely
slow constraint forces Gs · λs and purely fast constraint forces Gf · λf are eliminated. Then, for this

null space matrix P T ·
[
GsT Gsf

T
Gf

T
]

=
[
0 G

sf T
0

]
holds.

With tN the end time of a simulation, the number of macro time steps is N = tN/p∆t where p is
the number of micro steps per macro step. We compare the number of unknowns for one macro time
step [0,∆T ] and for the whole simulation [0, tN ]. In Table 1, the number of unknowns are displayed
for the single rate (p = 1) and multirate (p > 1) case for the Lagrange multipliers method and the
null space method. From the table it can be seen that the number of unknowns increases when going
from single rate in [0∆t] to multirate simulation for [0p∆t]. However, for the whole simulation to tN
the number of all unknowns is reduced in the multirate case compared to the single rate case. In all
cases, the null space technique reduces the number of unknowns.
A multi-body system which consists of four bodies connected by spherical joints, see Figure 2, is
simulated with the variational multirate integration. The first large and heavy body moves slowly
while the other three small bodies are fast. Between the last two bodies, there is a spring with a fast
potential W and the slow energy is the potential energy. For a simulation with ∆T = 0.0001, tn = 1
and p = 5, Figure 3 shows the good energy behaviour and the preservation of the angular momentum
component in gravity direction is illustrated in Figure 4.
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Optimal feedback control for constrained mechanical systems

Daniel Glaas, Sigrid Leyendecker

When doing optimal control one wants to combine the offline optimisation of a desired trajectory with
an online feedback control to eliminate perturbations from the optimal trajectory. In the simulation
here, the variational integrator as a variant of a structure-preserving integration scheme is used. A
midpoint quadrature rule is used to approximate the action in one time interval via a discrete La-
grangian Ld(qk, qk+1) ≈

∫ tk+1

tk
L(q(s), q̇(s))ds with configuration sequence qk ≈ q(tk) for k = 0, . . . , N .

Applying a discrete variational principle δSd({qk}Nk=0) = 0, see [3], and an approximation of the vir-
tual work F±d (qk, qk+1, uk) with control sequence {uk}N−1

k=0 , the Lagrange-d’Alembert principle yields
a discrete Euler-Lagrange equation in a ”position-momentum form that only depends on the current
and future time steps” [2]. This principle is applied to three different coordinate choices, see Table
1. In redundant coordinates the movement is forced to the manifold by using holonomic constraints
g(q(t)) = 0, G(qk) = ∂g(qk)

∂qk
and a nullspace matrix P (qk) with P T (qk) ·GT (qk) = 0. To compute the

desired trajectory, initial and final conditions on the configuration and conjugate momentum together
with the discrete equations in minimal coordinates (see Table 1) serve as non-linear equality con-
straints for the minimisation of a given objective functional. Applying the DMOC (discrete mechanics
and optimal control [4]) algorithm, an optimal trajectory and according control input is calculated.

storage
+ +

dynamic
system

Kk

−+

uopt,k uk

xopt,k

xk

xk

exk

uR,k

Legend:
uopt,k: optimal control input
xopt,k: optimal system state

xk: measured state
exk

: error of system state
uR,k: additional control input
uk: summarised control input 

Figure 1: Block diagram of general feed-
back control
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Figure 2: Sketch of the rigid body double pendu-
lum on a cart

The correction of perturbations is done by a feedback controller. An additional control value uR,k
is added to the optimal control input uk = uopt,k + uR,k. It is calculated by uR,k = Kkexk , which
is a multiplication of a feedback matrix Kk with the error exk = xopt,k − xk, being the difference
between desired xopt and ”measured” state x. Figure 1 shows the resulting block structure. In the
context of the optimal control approach, the Riccati feedback controller is commonly used to min-

imise a cost-function V =
∑N−1

k=0

[
eTxkQkexk + uTR,kRkuR,k

]
+ eTxNQNexN with (semi-)positive definite

weighting matrices Qk and Rk. After linearising the system to δxk+1 = Akδxk + Bkδuk, the discrete
Riccati equation for non-constant Ak and Bk is applied to calculate Kk [1]. Equation (1) is evaluated
backwards in time, the initial value is PN = QN , and after that Kk as defined in (2) is calculated.

Pk = ATk Pk+1Ak −ATk Pk+1Bk(B
T
k Pk+1Bk +Rk)

−1BT
k Pk+1Ak +Qk (1)

Kk = (BT
k Pk+1Bk +Rk)

−1BT
k Pk+1Ak (2)

The described algorithm is applied to several full- and under-actuated systems, for example the under-
actuated double pendulum on a cart. In Table 1, the configuration, momentum and actuation vectors
are given, a schematic diagram is presented in Figure 2. The comparison of the Riccati-control
algorithm with different coordinate choices is done for an optimal upswing from θ0

1 = θ0
2 = π to

θN1 = θN2 = 0 with x0
0 = xN0 = 0 calculated in DMOC. The simulation time is T = 2s, the time step is

∆t = 0.002s and the disturbed initial condition is θ1 = θ2 = π− 0.1. The controlled trajectories of all
three implementations are very similar compared to each other, the qualitative behaviour is plotted
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Table 1: Discrete Euler-Lagrange equations in the different choices of
coordinates for the under-actuated double pendulum on a cart

coordinate discrete equations of motion in ”pq-formulation” q p

minimal

0 = pk +
∂Ld(qk, qk+1)

∂qk
+ F−

d (qk, qk+1, uk)

pk+1 =
∂Ld(qk, qk+1)

∂qk+1
+ F+

d (qk, qk+1, uk)

x0

θ1
θ2

 px0pθ1
pθ2



redundant

0 = pk +
∂Ld(qk, qk+1)

∂qk
+ F−

d (qk, qk+1, uk)−GT (qk)λk∆t

0 = g(qk+1)

pk+1 =
∂Ld(qk, qk+1)

∂qk+1
+ F+

d (qk, qk+1, uk)
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py2



nullspace

0 = P pk + PT (qk)
∂Ld(qk, qk+1)

∂qk
+ PT (qk)F−

d (qk, qk+1, uk)

0 = g(qk+1)

P pk+1 = PT (qk+1)
∂Ld(qk, qk+1)

∂qk+1
+ PT (qk+1)F+

d (qk, qk+1, uk)
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Figure 3: Perturbed up-
swing

in Figure 3. The blue line represents the first pendulum, the red line the second. Stepping forward in
time, the lines become thinner and richer in contrast.
In Figure 4, the control effort Vuk =

∑k
i=0 u

T
R,iRiuR,i is plotted for all

three coordinate choices. All graphs are strictly increasing as being
a sum of positive terms and the gradient corresponds to the differ-
ence of the controlled trajectory to the reference trajectory. The abso-
lute values differ between all three coordinate choices, but an adequate
qualitative behaviour is ensured as cost increases occur at the same
time for all three coordinate choices. After t = 1.3s, the perturbation
is eliminated and control costs stay constant. In summary, we have
implemented a Riccati feedback controller for constrained variational
integrators. Both, the optimal control problem and the Riccati con-
troller are based on the same structure preserving discrete equations
of motion. With this approach, a stable handling of highly-nonlinear
systems is assured.
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Figure 4: Control effort for
perturbed upswing

By comparing the feedback control effort, it reveals that all three coordinate parametrisations only
differ slightly. Thus, a different choice of coordinates can be used in the feedback control and in the
optimal control problem which might be useful in practice.
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Towards higher order multi-symplectic Lie-group variational integrators for geometrically
exact beam dynamics – avoidance of shear locking

Thomas Leitz, Sigrid Leyendecker

In geometrically exact beams dynamics [5], a model of slender structures is used, where the beam is
represented by the position of points on the centerline and the orientation of the cross section at each
point. In three-dimensional space, a point – comprised of the position and the orientation of the cross
section – has six degrees of freedom, similar to a rigid body.
The derivation of higher order Lie-group variational integrators requires the interpolation of two or
more points on the beam [1, 2, 4]. Doing this, special care has to be taken in order to avoid shear
locking. Since shear locking is independent of the velocity, we restrict ourselves in the following to an
elastostatic analysis of the beam without loss of generality.
Shear locking is a phenomenon, that arises in the formulation of the deformation energy density, which
is gives as

U (Ω, w) = U1 (w) + U2 (Ω) =
1

2
(w − e3)T C1 (w − e3) +

1

2
ΩTC2Ω

where w − e3 and Ω are the linear and angular strains, given in the material frame, and C1 and C2

are symmetric positive definite matrices representing the linear and angular stiffnesses of the beam.
Thereby C1 = diag (GA,GA,EA) and C2 = diag (EI1, EI2, G (I1 + I2)) where A is the cross section
area, I1 and I2 are the principal area moments of inertia and E and G are Young’s modulus and the
shear modulus respectively. U1 (w) is composed of tensile and shear energy and U2 (Ω) is composed
of bending and torsional energy. For the parametrization of a point on the beam, we use x ∈ R3

for the position and a unit quaternion p ∈ H1 = {p | p ∈ H, ‖p‖ = 1} for the orientation of the cross
section. The arc-length parameter s ∈ [0, `] denotes the point in the undeformed configuration and
the deformation map is ϕ : s 7→ (p, x). The linear strain then becomes w − e3 = p̄x′p − e3, where p̄
is the conjugate quaternion and x′ = dx

ds is treated as a pure quaternion, i.e. the real part < (x′) = 0
vanishes. The angular strain is given as Ω = 2p̄p′.
The beam is discretized into K elements and therefore K + 1 nodes. The interpolation between the
nodes is done by the following method.

Interpolation The interpolation between the nodes is done using unit dual quaternions p̃ = p+ ε
2xp

where p̃ ∈ H̃1 =
{
p̃ | p̃ = pr + εpε, ε

2 = 0, ‖p̃‖ = 1
}

and x is treated as a pure quaternion. The inter-
polation is done by the normalized weighted sum of the unit dual quaternions, a.k.a dual quaternion
linear blending (DLB) [3]. Therefore the positions and the orientations are interpolated at the same
time. With

p̃ (s) =
P̃∥∥∥P̃
∥∥∥

with P̃ =
K∑

k=0

Wk (s) p̃k = Pr + εPε

the angular strain and w are

Ω =
2

‖Pr‖2
K−1∑

k=0

K∑

l=k+1

(
WkW

′
l −WlW

′
k

)
= (p̄kpl)

w =
1

‖Pr‖2
K−1∑

k=0

K∑

l=k+1

(
WkW

′
l −WlW

′
k

)
= [p̄k (xl − xk) pl]−

Pr · Pε
‖Pr‖2

Ω
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Pure bending Consider a beam – or some part of a beam – of length ∆s with the following deformed
configuration

x (s) =
∆s

ϕ0




1− cosα (s)
0

sinα (s)


 w = p̄x′p =




0
0
1




p (s) =




cos α(s)
2

0

sin α(s)
2

0


 Ω = 2p̄p′ =




0
ϕ0

∆s
0


 e3

e1

ϕ0

d3
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Figure 1: Pure bending

where α (s) = ϕ0

∆ss, i.e. the beam is bent into a circle without any elongation as depicted

in Figure 1. Insertion into the deformation energy yields U1 = 0 and U2 = 1
2EI2

( ϕ0

∆s

)2
,

i.e. it is only composed of bending energy. We insert the positions and orientations as
xk and pk at αk into the equations for the interpolated strains. The angular strain is

Ω =
2

‖P‖2
K−1∑

k=0

K∑

l=k+1

(
WkW

′
l −WlW

′
k

)



0

− sin αk−αl
2

0




and represents bending as expected. The linear strain is

w =
1

‖Pr‖2
∆s

ϕ0

K−1∑

k=1

K∑

l=k+1

(
WkW

′
l −WlW

′
k

)



0
0

2 sin αl−αk
2




Figure 2: green: without shear
locking, red: with
shear locking

The fact, that in w is zero in the e1 and e2 component is the reason why the interpolation method is
free from shear locking and therefore facilitates the derivation of higher order multi-symplectic Lie-
group variational integrators for geometrically exact beam dynamics without shear locking. Figure 2
shows the result of a simulation using the presented interpolation method in green, compared to the
result of a simulation using a different method suffering from shear locking in red.
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Kinematic validation of the human thumb model

Uday D. Phutane, Michael Roller1, Staffan Björkenstam2 , Sigrid Leyendecker

The activity of grasping is possible due to the unique design of the human thumb and its complex
movements viz. apposition, opposition etc. To simulate these complex movements, a physically
correct model of the thumb is necessary. Anatomically, the thumb is made of three bones and
three joints, namely the carpometacarpal (CMC) joint between the carpal (wrist) bone and the
first metacarpal bone, the metacarpophalangeal (MCP) joint between the first metacarpal and the
proximal phalanx bone and the interphalangeal (IP) joint between the proximal and distal phalanges.

The design of the CMC is of peculiar interest to researchers. It is a saddle joint [1] with rotations
of flexion-extension (FE) and adduction-abduction (AA) and has been mathematically implemented
in biomechanical models as a universal or cardan joint [2]. However, cadaver measurements [3] and
more recently magnetic resonance (MR) imaging [4] have established that the CMC (and also the
MCP) joints are composed with two axes of rotations which are non-orthogonal and non-intersecting,
as opposed to a universal joint. Also, it has been studied that such a joint configuration is necessary
to develop correct thumb tip forces in key posture and opposition posture [5].

Here, we develop a multibody model, similar to [6], of the thumb, as shown in Figure 1, with two
degrees of freedom for the CMC and the MCP joints, respectively, and one degree of freedom for the
IP joint. While the CMC and the MCP joints allow for motions of FE and AA, the IP joint allows
only the motion of FE. The dimensions of the bones of the thumb are taken from [7] while the location
and the orientation of the axes of the joints are obtained from [3].

CMC FE axis
CMC AA axis

MCP FE axis
MCP AA axis

IP FE axis
first metacarpal

proximal phalanx

distal phalanx
x thumb tip

Figure 1: Thumb multibody model
Figure 2: Point cloud of the thumb tip

with maximum ROM

To validate the realistic behavior of the model, we perform a two-fold validation test. Firstly, we plot
the point cloud, as shown in Figure 2, of the work-space created by the tip of the thumb by moving
the thumb kinematically in all its degrees of freedom and then calculating the volume using alpha
shapes. There are two sets of limits on the range of motion (ROM), namely the maximum ROM
and the grasp ROM. The grasp ROM limits are smaller than the maximum ROM as grasping while
performing activities of daily living is not possible with the thumb at its anatomic extreme positions.
Hence, grasp ROM yields lesser volume than maximum ROM. This reduction in the volume is a
kinematic measure for a thumb model. We calculate the volume reduction for the thumb model

1Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany
2Fraunhofer-Chalmers Centre, Gothenburg, Sweden
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we created using parameters as stated above and also for four more thumb models obtained from
Monte-Carlo simulations as described in [7]. These thumb models are representative of the anatomic
variability of thumb FE and AA axes in general population and have differences such as the location
of the MCP FE axis being distal to the MCP AA axis in two models and vice versa in the other two
models. The reduction of volume for the thumb models from our simulations is found to be in the
range of 71% to 75%. We compare these values with data from literature [8], wherein the volume
reduction values vary between 68% and 76%.

Secondly, we compute the axial rotation of the thumb CMC joint in different postures. The axial
rotation of the thumb is an outcome from the different postions of the thumb in FE and AA as the
thumb CMC does not have an active third degree of freedom to rotate around its longitudinal axis.
We compare the axial rotation of the first metacarpal for different FE and AA rotations with values
from literature [1]. The axial rotation resulting in our simulation lies within the limits of the standard
deviation of the literature values. The results for the two validation tests are in close agreement
with the literature values and consequently the thumb model can be said to have been validated
kinematically.
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Time transformed mixed integer optimal control problems with impacts

Maik Ringkamp, Sina Ober-Blöbaum1, Sigrid Leyendecker

The solutions of mixed integer optimal control problems (MIOCPs) yield optimized trajectories for
dynamical systems with instantly changing dynamical behavior. The instant change is caused by a
changing value of the integer valued control function v ∈ L∞(I,V) that maps the time t ∈ I = [t0, tf ]
to an integer value v(t) ∈ V = {1, 2, . . . , nv}. A changing value of v leads to an instantaneously
changing value of the right-hand side of the differential equation ẋ = F (x, y, u, v). In contrast to that,
slightly changing values of the control u ∈ L∞(I,Rnu), the algebraic function y ∈ L∞(I,Rny) and the
state function x ∈ W1,∞(I,Rnx) lead to a slightly changing right-hand side. The direct discretization
of a MIOCP leads to a mixed integer nonlinear program (MINLP) and can not be solved with gradient
based optimization methods at once. We extend the work by Gerdts [1] and reformulate a MIOCP
with integer dependent constraints by a time transformation to yield an ordinary optimal control
problem (OCP). The time transformed MIOCP (TMIOCP) replaces the integer control function v by
a fixed integer control function v̄N,n ∈ L∞(I,V) and introduces a time control w ∈ L∞(I,R). The
time interval I is partitioned into N major intervals Ij of the length ∆Ij and n minor intervals Iij . The
fixed integer control function v̄N,n is defined constant on each minor interval with values v̄N,n(τ) ∈ V.
A changing value of w(τ) for τ ∈ Iij allows to scale the length of the minor interval Iij , a scaling to zero
deactivates the corresponding integer value v̄N,n(τ) and therefore allows to change the sequence of
active right-hand sides F . In contrast to earlier works, we use control consistent fixed integer control
functions [2] to assure that arbitrary switching is allowed in the interior of each major interval Ij . The
time transformed MIOCP is shortly given in the following.

Definition 1 For a MIOCP with right-hand side F : Rnx × Rnu × V → Rnx, constraints h : Rnx ×
Rnu × V → Rnh, and an objective functional J(x, u, v) =

∫
I B(x, u, v)dt with B : Rnx × Rnu × V → R

the TMIOCP reads:

min
x,u,w

J∗(x, u, w) =

∫

I

w(τ)B(x(τ), u(τ), v̄N,n(τ)) dτ (1)

s. t. ẋ(τ) = w(τ)F (x(τ), y(τ), u(τ), v̄N,n(τ)) for a.e. τ ∈ I (2)

0 ≥ w(τ)h(x(τ), u(τ), v̄N,n(τ)) for a.e. τ ∈ I (3)

0 ≤ w(τ) for a.e. τ ∈ I (4)

∆Ij =

∫

Ij

w(s)ds for j = 1, . . . , N. (5)

subject to possibly further path and point constraints.

In Definition 1, J∗ is the time transformed objective functional and the functions B,F, h are contin-
uously differentiable with respect to the first two arguments. The integer dependent constraints h
can include algebraic constraints gv(x) = 0 and further inequalities dv(x) ≤ 0. This allows to model
systems with impacts because gv can be used to switch holonomic constraints on or off as e.g. the
fully plastic impact in the lockable double pendulum (Figure 1), for which the contact reaction force
G(q)Tλ occurs instantaneously. Impactive behavior can further be induced by non smooth controls u
as in the telescope walker (Figure 2). Here, a changing integer value v can lead to an instantaneously
changing control force fv if a foot strikes the ground at the position qcv for v = 1, . . . , 4. To regularize
the vanishing constraints (3) as in [2], the left-hand side is replaced by a value r1 > 0 and the opti-
mization is repeated, each time reusing the optimized trajectories (x∗k, u

∗
k, w

∗
k) as an initial guess for

the next optimization with rk+1 < rk until the discretized TMIOCP is finally solved for rnr = 0.
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Figure 1: Sketch of the lockable double pendulum
(left) with locally optimal trajectories
(middle and right)

The following mixed integer control systems are
modeled by a forced constrained Hamiltonian
with state x = (q, p) ∈ Rnx and Lagrangian mul-
tiplier y = λ ∈ Rny . Confer [3] for details on
the Hamiltonian type right-hand side F and fur-
ther constraint functions. In both of the pre-
sented MIOCPs the objective is the control ef-
fort J = 1

2

∫
I u

2(t) dt. The motion of a lockable
double pendulum is optimized, resulting in the
trajectories in Figure 1. Here, u represents the
torque applied to the first angle q1. The vertical
position of the first mass −l1cos(q1) determines
if the second angle q2 is locked or unlocked. The
optimized maneuver is a rest to rest swing up,
the double pendulum starts in the downward position q0 = (0, 0) and stops in the upward position
qf = (π2 , 0). The motion of the telescope walker is optimized, resulting in the trajectories in Figure 2.
The optimized maneuver is an acyclic gait change from walking to running. The initial conditions
are the states x0 resulting from an optimized cyclic walking gait, moving about a distance of 0.8m in
tf = 0.8s. The final conditions are the states xf resulting from an optimized running gait about a
distance of 2.5m in tf = 0.5s. The whole motion is restricted by a minimal height of qy ≥ 0.7m.
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tiplier y = � 2 Rny . Confer [3] for details on
the Hamiltonian type right-hand side F and fur-
ther constraint functions. In both of the pre-
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I u2(t) dt. The motion of a lockable

double pendulum is optimized, resulting in the
trajectories in Figure 1. Here, u represents the
torque applied to the first angle q1. The vertical
position of the first mass �l1cos(q1) determines
if the second angle q2 is locked or unlocked. The
optimized maneuver is a rest to rest swing up,
the double pendulum starts in the downward position q0 = (0, 0) and stops in the upward position
qf = (⇡2 , 0).
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qy f1

qc1 qc2

u – qx – qy – px – py

Movement of the walker at selected time nodes

Figure 2: Sketch of the telescope walker (upper left) with locally optimal
trajectories of the gait change from walking (stance phase, stance
phase, . . .) until qc3 to running (stance phase, flight phase, . . .) be-
ginning at qc3 .

The motion of the
telescope walker is op-
timized, resulting in
the trajectories in Fig-
ure 2. The optimized
maneuver is an acyclic
gait change from walk-
ing to running. The
initial conditions are
the states x0 result-
ing from an optimized
cyclic walking gait,
moving about a dis-
tance of 0.8m in tf =
0.8s. The final condi-
tions are the states xf

resulting from an opti-
mized running gait about a distance of 2.5m in tf = 0.5s. The whole motion is restricted by a minimal
height of qy � 0.7m.
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Figure 2: Sketch of the telescope walker (upper left) with locally optimal trajectories of the gait
change from walking (stance phase, stance phase, . . .) until qc3 to running (stance phase,
flight phase, . . .) beginning at qc3
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Comparison of finite element models for dielectric elastomers concerning volumetric
locking

Tristan Schlögl, Sigrid Leyendecker

The mechanical properties of commonly used polymers for dielectric elastomers are well covered by
hyperelastic material models, where the stress-strain relation is derived from a strain energy function.
Incompressibility is often approximated by a Poisson’s ratio close to 0.5 or a very large bulk modulus.
This, however, is like enforcing the incompressibility condition with a penalty method that, due to the
spatial finite element discretisation, might lead to volumetric locking [1]. As a result, the material is
artificially stiffened, not leading to physically meaningful simulation results. In analogy to the three-
field formulation for pure mechanical problems [1], in this work additional degrees of freedom are added
to the electromechanically coupled material model [2], leading to a multi-field formulation. Combined
with reduced spatial integration for the additional fields, also known as the mean dilatation method,
volume locking for incompressible and nearly incompressible materials is avoided [3]. Depending
on the specific choice of additional fields, different formulations are obtained. In the framework of
dielectric elastomer actuator simulation and structure preserving time integration, these formulations
are compared in terms of achievable incompressibility, tendency to volume-locking and computational
cost.

Figure 1: Revolute joint that is actuated by two artificial muscles in agonist/antagonist configuration

Four Neo-Hookean material models are investigated, each model is tested with numerical examples
that are typical for dielectric actuator simulations. An example set-up is illustrated in Figure 1. All
material models are based on the free energy density function Ω that is split into an isochoric term
Ωiso, a volumetric term Ωvol and an electromechanically coupling term Ωelec, such that

Ω = Ωiso + Ωvol + Ωelec. (1)

The isochoric and coupling term contributions are the same for all simulations and taken from [4].
The four different materials models differ in their volumetric part that in each case is given as

ΩI
vol = 1

2κ (J − 1)2 (2a)

ΩII
vol = 1

2κ
(
J̄ − 1

)2
+ p

(
J − J̄

)
(2b)

ΩIII
vol = p

(
J − J̄

)
+ λ

(
J̄ − 1

)
(2c)

ΩIV
vol = λ (J − 1) , (2d)

where κ is the bulk modulus and J is the determinant of the deformation gradient. During finite
element assembly, the dilatation field J̄ , the pressure field p and the Lagrange multiplier λ are treated
with a reduced integration method using shape functions with reduced order [1]. Model I is based
on a classical displacement formulation, extended by electromechanical coupling terms. Model II is
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formulated in analogy to a nearly incompressible three-field formulation for pure mechanical problems.
Model III extends model II by another field λ accounting for incompressibility. Finally, model IV is
an attempt to decrease the amount of additional fields necessary to obtain incompressible behaviour.

Figure 2: Transient response of the revolute joint for different material models

The transient response of the revolute joint that is controlled by two stacked actuators in ago-
nist/antagonist configuration (see Figure 1) is simulated with all four material models. The bulk
modulus κ = Y

3(1−2ν) is indirectly defined by specifying a Poisson ratio ν, where Y is the Young’s
modulus. The results are shown in Figure 2 and illustrate that material model I is not suited to
approximate the incompressible material behaviour of dielectric elastomers. Large Poisson ratios
inevitably lead to volume locking, even though the model is quite easy to implement and computa-
tionally very quick. Model II covers nearly incompressible behaviour very well in all applications,
but the computational cost rises by a factor of about 2.6 compared to model I. Model III performs
quite well, especially in combination with the structure preserving time integration scheme, allowing
for exact incompressibility without any significant increase in computational cost. The results from
model III and IV are identical to numerical accuracy. However, model IV remarkably not decreases
the computational cost compared to model III and hence does not offer any notable advantages.
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[3] T. Schlögl and S. Leyendecker. Comparison of non-locking incompressible multi-field finite element
models for dielectric actuators. International conference on Electromechanically Active Polymer
(EAP) transducers & artificial muscles, June 14-15, 2016, Helsingør, Denmark.
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Variational integrators of mixed order for systems acting on multiple time scales – The
relation of constrained Galerkin variational integrators to Runge-Kutta methods

Theresa Wenger, Sina Ober-Blöbaum1, Sigrid Leyendecker

Variational integrators of mixed order for systems acting on multiple time scales The simulation
of mechanical systems that act on multiple time scales is challenging as a stable integration of the
fast dynamics requires a highly accurate approximation whereas for the simulation of the slow part
a coarser approximation is accurate enough. The presented variational integrators of mixed order
couple coarse and fine approximations. We separate the unknowns q into fast qf and slow qs degrees
of freedom. The separation now allows to use a polynomial of degree ps respectively pf to approximate
the slow respectively the fast motion. Note, that only one time grid is used, with constant step size
h. Furthermore, the Lagrangian of a dynamical system consists of the difference of the kinetic energy
T and the potential. Assume the potential can be split in a slow part V (qs, qf ) and a fast part
W (qf ). Different quadrature rules with different orders are used to approximate the integral of each
energy part. In particular, the Gauss and the Lobatto quadrature with orders ordi, i = T, V,W ,
where i corresponds to the energy integral that is approximated, are used. Requiring stationarity
of the approximated action provides the variationally derived integration scheme. The conservation
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Figure 1: Simulation of qf1 (dashed purple),
reference solution (solid turquoise)
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Figure 2: Global error of the fast configura-
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properties, the performance and the computational efficiency of the variational integrators of mixed
orders are investigated numerically by means of the FPU-problem. Fig. 1 shows the configuration of
the first fast variable qf1 (i.e. the length of the first stiff spring) calculated via the variational integrators
of mixed orders with time step h = 0.1 (dashed lines) compared to a reference solution (solid line). In
the upper plot in Fig. 1, the degree pf is one and in the lower plot, the degree pf is six whereas the
degree ps of the polynomial approximating the slow configurations is in both plots one. Clearly, the
fast oscillation is much better resolved, when the degree pf is high. The results of a numerical analysis
regarding efficiency versus accuracy is shown in Fig. 2. It is evident that decreasing the degree of the
slow polynomial from 6 (blue dashed, pluses) to 3 (green dashed, crosses) saves run-time as the number
of unknowns in the discrete Euler-Lagrange equations decreases, while the accuracy suffers negligibly.
In a next step we decrease the order of the quadrature formula, that approximates the slow potential,
from 12 to 8 (purple dash-dotted, stars), bringing further savings in run-time while the accuracy of
the solution remains nearly the same. Reducing the degree ps to 1 (red dashed line, squares) and in
addition ordV to 4 (yellow dash-dotted, diamonds), the savings in run-time come along with a loss in
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accuracy. In summary, assessing the efficiency of the integrators depends on the desired accuracy.

The relation of constrained Galerkin variational integrators to Runge-Kutta methods The con-
strained Galerkin variational integrators base on the Galerkin variational integrators, see e.g. in [2],
now applied to holonomically constrained systems. Assume the motion is constrained to the constraint
manifold C = g−1(0) = {q | q ∈ Rn, g(q) = 0} ⊂ Rn, where q(t) ∈ Rn denotes the configuration. We
use the Lagrange multiplier theorem to include the holonomic constraints g(q) and consider the aug-
mented Lagrangian L̄, i.e. the Lagrangian L of a dynamical system minus the scalar product g(q) · λ,
where λ(t) is the Lagrange multiplier. It is supposed that the Lagrangian is hyperregular, such that
the Legendre transform FL : (q, q̇) 7→ (q, ∂L∂q̇ ) = (q, p) is a global diffeomorphism with p being the
conjugate momentum. A choice of finite-dimensional function spaces, approximating q via qd of de-
gree s respectively λ via λd of degree w, together with quadrature formulas is used to approximate
the action. We provide sufficient conditions to ensure the solvability of the corresponding discrete
Euler-Lagrange equations (DEL) and to obtain a stiffly accurate higher order integration scheme. The
constrained variational integrator we focus on, has the discrete augmented Lagrangian

L̄d = h

r∑

i=1

biL(qd(cih; qk), q̇d(cih; qk))− h
w∑

i=0

ei
[
g(qd(fih; qk)) · λik

]
(1)

as generating function, where (fi, ei)
w
i=0 are the coefficients of the Lobatto quadrature, while (ci, bi)

r
i=1

can be the coefficients of the Gauss or the Lobatto quadrature. The integration scheme corresponding
to (1) provides a mapping of the configuration variables C × C → C × C. The discrete conjugate
momentum, calculated in a post-processing step, does not necessarily fulfill the hidden constraints
∂g(q)
∂q · q̇ = 0, with q̇ = (∂L∂q̇ )−1(q, p). However, one can choose the representative of the equivalence

class, that does fulfill the hidden constraints by applying a projection step in the post-processing.
Assuming that the discrete augmented Lagrangian is self adjoint, inducing that the distribution of
the polynomial control points of qd and λd and the quadrature formulas are symmetric (what is
true for Lobatto and Gauss quadrature), the resulting variational integrator is time reversible on
configuration level. By a simple post-processing projection step, time reversibility on momentum level
can be achieved. Of special interest are the constrained variational integrators with r = s, qd of
degree s− 1, w = s− 1 and choosing ci, i = 1, . . . , s as the control points of the Lobatto quadrature,
because numerical investigations attribute them a convergence order of 2s − 2. This indicates, that
the same convergence order as for the constrained s-stage Lobatto IIIA/B method is achieved while
one unknown less has to be solved for using the discrete Euler-Lagrange equations. It is well known
that special classes of variational integrators are equivalent to symplectic partitioned Runge-Kutta
methods, see e.g. [1]. However, when the degree of the polynomial qd is one less than the number r of
quadrature points ci, the general Runge-Kutta construction method fails, because the internal stage
derivatives Q̇i = q̇d(cih), i = 1, . . . , s, become linearly dependent. A detailed analysis of the problem
is given in [2], there for the unconstrained case. Furthermore, in [2] a modified Runge-Kutta method is
derived that takes the linear dependence of the internal stage derivatives into account via an additional
constraint. The approach given in [2] can be easily extended to the holonomically constrained case,
as the internal stage derivatives Q̇i do not effect the approximation of the integral of g(q) · λ.
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4 Activities

4.1 Dynamical laboratory

Dynamical laboratory – modeling, simulation and experiment The dynamical laboratory – mod-
eling, simulation and experiment adresses all students of the Technical Faculty of the FAU Erlangen-
Nuremberg. The aim of the practical course is to develop mathematical models of fundamental
dynamical systems to simulate them numerically and the results are compared to measurements from
the real mechanical system. Here, the students learn both the enormous possibilities of computer
based modeling and its limitations. The course contains one central programming experiment and six
experiments at the real existing objects, including the corresponding numerical simulation:

• programming training

• beating pendulums

• gyroscope

• ball balancer

• robot arm

• inverse pendulum

• balancing robot
programming training

AB

φ0

beating pendulums gyroscope ball balancer

PendelWinkelsensor

Schli!en

Servoumrichter

Bewegung

robot arm inverse pendulum balancing robot
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Slot car racer The LTD’s computer controlled slot car racer is extend by a powerful industrial camera
and a new data acquisition device. The UI-3060CP USB-3 camera from IDS provides excellent image
quality, a high refresh rate of 166 fps at 2.4 MP, low input delay and extremely low noise. The PCIe-
6321 data acquisition board from National Instruments integrates high-performance analog, digital,
and counter/timer functionality into a single device, making it well-suited to control the slot car via
computer. These new components will bring significant improvement to the slot car tracking lag and
hence to the control system that allows to correct the vehicle towards the desired state.

The slot car racer with the new industrial camera

4.2 Teaching

Wintersemester 2016/2017

Biomechanik der Bewegung (MT)

Vorlesung + Übung H. Lang

Dynamik starrer Körper (MB, ME, WING, IP, BPT, CE)
Vorlesung S. Leyendecker

Übung + Tutorium D. Budday, D. Glaas
T. Leitz, M. Ringkamp
U. Phutane, T. Schlögl

Mehrkörperdynamik (MB, ME, WING, TM, BPT, MT)
Vorlesung S. Leyendecker

Übung T. Wenger

Numerische Methoden in der Mechanik (MB, ME, WING, TM, BPT, MT)

Vorlesung + Übung H. Lang

Theoretische Dynamik II (MB, ME, WING, TM, BPT, CE, M, Ph, LaP)

Vorlesung + Übung H. Lang
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Dynamisches Praktikum – Modellierung, Simulation und
Experiment (MB, ME, WING, IP)

S. Leyendecker
H. Lang, D. Budday
T. Gail, U. Phutane

T. Leitz, M. Ringkamp
T. Schlögl, T. Wenger

Sommersemester 2016

Biomechanik (MT)

Vorlesung + Übung H. Lang
geprüft 32 + 6 (WS 2015/2016)

Dynamik nichtlinearer Balken (MB, M, Ph, CE, ME, WING, IP, BPT)

Vorlesung + Übung H. Lang, M. Ringkamp
geprüft 14

Geometrische numerische Integration (MB, ME, WING, BPT)
Vorlesung S. Leyendecker

Übung T. Wenger
geprüft 4 + 2 (WS 2015/2016)

Statik und Festigkeitslehre
(BPT, CE, ME, MWT, MT)

Vorlesung S. Leyendecker

Übung + Tutorium D. Budday, T. Gail
geprüft 457 + 525 (WS 2015/2016) D. Glaas, T. Leitz

U. Phutane, M. Ringkamp
T. Wenger

Theoretische Dynamik
(TM, MB, ME, BPT, WING)

Vorlesung + Übung H. Lang, R. Hoffmann
geprüft 28

Rechnerunterstützte Produktentwicklung (RPE)
Versuch 6: Mehrkörpersimulation in Simulink

(MB, ME, WING) Praktikum D. Budday, T. Gail
Teilnehmer 60 D. Glaas, R. Hoffmann

T. Leitz, U. Phutane
M. Ringkamp, T. Schlögl

T. Wenger

Additional exams

Numerische Methoden in der Mechanik
geprüft 1
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Wintersemester 2015/2016

Biomechanik der Bewegung (MT)

Vorlesung + Übung H. Lang
geprüft 32 + 5 (SS 2016)

Dynamik starrer Körper (MB, ME, WING, IP, BPT, CE, MT)
Vorlesung H. Lang

Übung + Tutorium D. Budday, D. Glaas
geprüft 384 + 171 (SS 2016) T. Leitz, M. Ringkamp

T. Schlögl, T. Wenger

Mehrkörperdynamik (MB, ME, WING, TM, BPT, MT)
Vorlesung H. Lang

Übung T. Wenger
geprüft 63 + 9 (SS 2016)

Dynamisches Praktikum – Modellierung, Simulation und
Experiment (MB, ME, WING, IP, BPT)

Teilnehmer 11 S. Leyendecker
H. Lang

D. Budday, D. Glaas
T. Leitz, M. Ringkamp
T. Schlögl, T. Wenger

Additional exams

Theoretische Dynamik II
geprüft 3

4.3 Theses

Master theses

• Markus Eisentraudt
Optimalsteuerung und Simulation für Systeme mit holonomen und nichtholonomen Zwangsbe-
dingungen auf variationeller Basis

• Alexander Hetzner
On the Solution of the Karush-Kuhn-Tucker Conditions in Discrete Mechanics and Optimal
Control for constrained Systems

• Murad Muradi
Entwicklung und strukturerhaltende Simulation eines autonomen PVC-Verstrichs

• Johann Penner
Modellbildung zur Optimalsteuerung einer spurgebundenen Modellrennbahn

• Roland Purucker
Bestimmung von Materialeigenschaften dielektrischer Elastomerstapelaktoren auf Silikonbasis
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Project theses

• Kilian Kleeberger
Sensorintegration und Lokalisierung eines balancierenden NXT Roboters

• Sebastian Rast
2D simulation of a trapeze athlete using discrete mechanics and optimal control

Bachelor theses

• Juliane Full
Kinetische Untersuchung von Sekundärelementen in Proteinen am Beispiel von Cyclopilin A

• Michèle Gleser
Kinematik, inverse Kinematik, Dynamik und inverse Dynamik am Beispiel biomechanischer
Armmodelle

• Daniel Greißel
Modellbildung und Simulation zweier gekoppelter Pendel

• Sebastian Scheiterer
Optimal control of the swing-up of an inverted pendulum

4.4 Seminar for mechanics

together with the Chair of Applied Mechanics LTM

04.03.2016 Daniel Greißel
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Modellbildung und Simulation zweier gekoppelter Pendel

18.03.2016 Staffan Björkenstam
Fraunhofer Chalmers Research Centre Industrial Mathematics, Robotics, Optimization,
Control Theory, Gothenburg, Sweden
Simulation of a balancing humanoid with non-smooth contact and feedback control

26.04.2016 Alexander Hetzner
Master thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
On the solution of the Karush-Kuhn-Tucker conditions in discrete mechanics and opti-
mal control for constrained systems

03.05.2016 Michele Gleser
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Kinematik, inverse Kinematik, Dynamik und inverse Dynamik für Armmodelle in der
Biomechanik

03.05.2016 Sebastian Scheiterer
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Optimal control and practical implementation to swing up the inverted pendulum
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05.07.2016 Juliane Full
Bachelor thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Kinetische Untersuchung von Sekundärelementen in Proteinen am Beispiel von
Cyclopilin A

05.07.2016 Kilian Kleeberger
Project thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Sensorintegration und Lokalisierung eines balancierenden NXT Roboters

27.07.2016 Markus Eisentraudt
Master thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Optimalsteuerung und Simulation für Systeme mit holonomen und nichtholonomen
Zwangsbedingungen auf variationeller Basis

27.07.2016 Murad Muradi
Master thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Entwicklung und strukturerhaltene Simulation eines autonomen PVC-Verstrichs

29.07.2016 Minh Tuan Duong
Department of Machine Tools and Tribology, School of Mechanical Engineering, Hanoi
University of Science and Technology, Vietnam
Biomechanical Models of Soft Tissues and the Smoothed FEM

10.10.2016 Karin Gruber
MTI Mittelrhein, Institut für Medizintechnik und Informationsverarbeitung, Universität
Koblenz-Landau, Germany
Computermodellierung individueller Wirbelsäulen mit Anwendung in der Medizin

18.11.2016 Gabriele Bleser and Bertram Taetz
Junior Research Group wearHEALTH, University of Kaiserslautern, Germany
Mobile motion analysis based on inertial measurement units applications, models and
methods

22.11.2016 Johann Penner
Master thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Modellbildung zur Optimalsteuerung einer spurgebundenen Modellrennbahn

09.12.2016 Roland Purucker
Master thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Bestimmung von Materialeigenschaften dielektrischer Elastomerstapelaktoren auf
Silikonbasis

09.12.2016 Sebastian Rast
Project thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
2D simulation of a trapeze athlete using discrete mechanics and optimal control
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4.5 Editorial activities

Advisory and editorial board memberships Since January 2014, Sigrid Leyendecker is a member of
the advisory board of the scientific journal Multibody System Dynamics, Springer. She is a member
of the Editorial Board of ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für
Angewandte Mathematik und Mechanik since January 2016.

4.6 Open day – 50 years Technical Faculty of the FAU Erlangen-Nuremberg

On November 5, 2016, the Faculty of Technology of FAU celebrated its 50th anniversary. On this
occasion, the university held an ’Open Day’ with guided tours, lectures, and participatory activities.
The Chair of Applied Dynamics participated and showed interesting experiments in its laboratories,
such as the beating phenomenon for pendulums, the conservation of angular momentum, optimal
control for an inverted pendulum and a Carrera race course. People had the chance to execute most of
the mechanical experiments on their own, e.g. to feel forces, torques, angular velocity and acceleration
experienced on a chair. Some exhibits were well suited for children such as to try to ‘invert’ a pendulum
simply by controlling with a joystick without the help of numerical control algorithms. The atmosphere
was very nice and the resonance extremely positive.
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4.7 ‘MINT Forscherwerkstatt’ 2016 with the START-Foundation

The ‘MINT-Forscherwerkstatt’ 2016 of the START-Foundation (in cooperation with the Deutsche
Telekom-Foundation), which supports middle and high-school students with a migrational and often
socially underprivileged background, took place in October 2016. Dominik Budday, who is a scholar
with the Deutsch Telekom Stiftung, engaged in the research workshop as one of the group leaders,
offering the course ‘ProteInforMechanik’ together with a fellow scholar Florian Hertrampf. Twelve
participants from classes 10-12 had the chance to learn about different methods and software-tools to
model and analyze the structure and function of proteins and other macromolecules. The diverse course
linked various topics from high-school STEM subjects and far beyond, closely related to Dominik
Buddays current research at the LTD. The strong engagement and great feedback from all participants
were indicators of a successful science workshop, such that the course material shall be employed again
at similar events like ‘Girls Day’ at the LTD.
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5.1 Book chapters

1. M.W. Koch and S. Leyendecker. Structure preserving optimal control of a three-dimensional
upright gait. In: M.J. Font-Llagunes (ed.) Multibody Dynamics: Computational Methods and
Applications, Vol. 42, pp. 115-146, Springer, 2016.

5.2 Reviewed journal publications

1. M. Ringkamp, S. Ober-Blöbaum, and S. Leyendecker. On the time transformation of mixed
integer optimal control problems using a consistent fixed integer control function. Mathematical
Programming, pp. 1-31, 2016.

2. T. Schlögl and S. Leyendecker. Electrostatic-viscoelastic finite element model of dielectric actu-
ators. Comput. Methods Appl. Mech. Engrg., Vol. 299, pp. 421-439, 2016.

3. M.W. Koch, M. Ringkamp, and S. Leyendecker. Discrete Mechanics and Optimal Con-
trol (DMOCC) of Walking Gaits. Journal of Computational and Nonlinear Dynamics, DOI
10.1115/1.4035213, accepted for publication, 2016.

5.3 Reviewed proceeding publications

1. H. Lang and S. Leyendecker. Complex frequency response for linear beams with Kelvin-Voigt
viscoelastic material. In Proceedings of the 4th Joint International Conference on Multibody
System Dynamics, 20 pages, Montreal, Canada, 29 May - 2 June 2016.

2. T. Wenger, S. Ober-Blöbaum, and S. Leyendecker. Variational integrators of mixed order for
dynamical systems with multiple time scales and split potentials. In Proceedings of the VII Eu-
ropean Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS
Congress, 14 pages, Crete Island, Greece, 5-10 June 2016.

3. T. Wenger, S. Ober-Blöbaum, and S. Leyendecker. Constrained Galerkin variational integra-
tors and modified constrained symplectic Runge-Kutta methods. In Proceedings of the interna-
tional Conference of Numerical Analysis and Applied Mathematics (ICNAAM), 4 pages, Rhodes,
Greece, 19-25 September 2016.

4. T. Schlögl and S. Leyendecker. Dynamic simulation of dielectric elastomer actuated multibody
systems. In Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures
and Intelligent Systems (SMASIS), Student Best Paper Award, 10 pages, Stowe, VT, USA, 28-
30 September 2016.

5.4 Talks

1. T. Gail, S. Leyendecker, and S. Ober-Blöbaum. Variational multirate integration in multi-body
dynamics. GAMM Annual Meeting, Braunschweig, Germany, 7-11 March 2016.

2. D. Glaas and S. Leyendecker. Optimal feedback control for constrained mechanical systems.
GAMM Annual Meeting, Braunschweig, Germany, 7-11 March 2016.

3. R. Hoffmann, B. Taetz, M. Miezal, G. Bleser, and S. Leyendecker. On data-guided optimal
control simulation of human motion. GAMM Annual Meeting, Braunschweig, Germany, 7-11
March 2016.

Chair of Applied Dynamics, Annual Report 2016 38



6 Publications

4. T. Leitz and S. Leyendecker. Multisymplectic variational (Lie group) integrators for PDEs of
geometrically exact beam dynamics using algorithmic differentiation. GAMM Annual Meeting,
Braunschweig, Germany, 7-11 March 2016.

5. M. Ringkamp, S. Ober-Blöbaum, and S. Leyendecker. Time transformed mixed integer optimal
control problems with impacts. GAMM Annual Meeting, Braunschweig, Germany, 7-11 March
2016.

6. T. Wenger, S. Ober-Blöbaum, and S. Leyendecker. Variational integrators of higher order for
constrained dynamical systems. GAMM Annual Meeting, Braunschweig, Germany, 7-11 March
2016.

7. D. Budday, R. Fonseca, S. Leyendecker, and H. van den Bedem. Clash- and constraint guided
motion planning reveals conformational transition pathways in proteins. RECOMB, Poster,
Santa Monica, California, USA, 17-21 April 2016.

8. D. Budday, S. Leyendecker, and H. van den Bedem. Frustration-guided motion planning reveals
conformational transitions in proteins. 3DSIG, Presentation and poster, Orlando, Florida, USA,
17-21 April 2016.

9. H. Lang and S. Leyendecker. Complex frequency response for linear beams with Kelvin-Voigt
viscoelastic material. The 4th Joint International Conference on Multibody System Dynamics,
Montreal, Canada, 29 May - 2 June 2016.

10. T. Wenger, S. Ober-Blöbaum, and S. Leyendecker. Variational integrators of mixed order for
dynamical systems with multiple time scales and split potentials. VII European Congress on Com-
putational Methods in Applied Sciences and Engineering (ECCOMAS), Crete Island, Greece,
5-10 June 2016.

11. T. Schlögl and S. Leyendecker. Comparison of non-locking incompressible multi-field finite ele-
ment models for dielectric actuators. EuroEAP, Poster, Helsingoer, Denmark, 14-15 June, 2016.

12. D. Budday, R. Fonseca, S. Leyendecker, and H. van den Bedem. Frustration-guided motion
planning reveals conformational transitions in proteins. Invited lecture, Donald Lab at Duke
University, Durham, North Carolina, USA, 11 July 2016.

13. S. Leyendecker. Modelling and simulation of biological and artificial muscles. Invited lecture,
International Inauguration Symposium, Muscle Research Center Erlangen (MURCE), Erlangen,
Germany, 21-22 July 2016.

14. T. Wenger, S. Ober-Blöbaum, and S. Leyendecker. Constrained Galerkin variational integrators
and modified constrained symplectic Runge-Kutta methods. International Conference of Numer-
ical Analysis and Applied Mathematics (ICNAAM), Rhodes, Greece, 19-25 September 2016.

15. D. Budday, R. Fonseca, A. Héliou, S. Leyendecker, and H. van den Bedem. Navigating protein
conformation spaces by kino-geometric sampling and modulating frustrated motions. Annual
Meeting of the German Biophysical Society, Poster, Erlangen, Germany, 25-28 September 2016.

16. T. Schlögl and S. Leyendecker. Dynamic simulation of dielectric elastomer actuated multibody
systems. ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems
(SMASIS), Stowe, VT, USA, 28-30 September 2016.
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Visit of the Bergkirchweih 17.05.2016

Student summer party 14.07.2016
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Visit of Bamberg 22.07.2016

Christmas party together with LTM 08.12.2016
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Nikolaus hike 09.12.2016
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