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1 Preface

1 Preface

This report summarises the activities in research and teaching of the Chair of Applied Dynamics at
the University of Erlangen-Nürnberg between January and December 2017.

The main direction of research is computational dynamics and optimal control. Efficient technologies
for dynamical and optimal control simulations are developed, facing contemporary life science
and engineering problems. The problems under investigation come from biomechanics (natural
or impaired human movements and athletic’s high performance, human hand grasping, muscle
wrapping) and robot dynamics (industrial, spatial and medical) as well as the optimisation and
optimal control of their dynamics. Further topics are the modelling and simulation of biological and
artificial muscles (as electromechanically coupled problems), multiscale and multirate systems with
dynamics on various time scales (examples in astrodynamics as well as on the atomistic level), higher
order variational integrators, Lie group methods and viscous beam formulations as well as research
on structural rigidity and conformational analysis of macromolecules. The development of numerical
methods is likewise important as the modelling of the nonlinear systems, whereby the formulation of
variational principles plays an important role on the levels of dynamic modeling, optimal control as
well as numerical approximation, yielding a holistic approach.
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2 Team

2 Team

chair holder
Prof. Dr.-Ing. habil. Sigrid Leyendecker

technical staff
Beate Hegen
Dipl.-Ing. (FH) Natalia Kondratieva until 31.07.2017
Sven Lässig
Johannes Rößler from 01.04.2017

academic scientist
Dr. rer. nat. Holger Lang

scientific staff
Dr. Toufik Bentaleb from 15.08.2017
M.Sc. Dominik Budday
Dr.-Ing Minh Tuan Duong from 09.01.2017
M.Sc. Markus Eisentraudt
M.Sc. Daniel Glaas until 31.03.2017
Dipl.-Ing. Tobias Gail until 31.12.2017
Dipl.-Ing. Thomas Leitz
M.Sc. Johann Penner
M.Sc. Uday Phutane
Dipl.-Ing. Tristan Schlögl
M.Sc. Theresa Wenger

students
Dominik Bartels Pascal Baysal
Felix Binder Daniel Bretscher
Lewin Butazzo Simon Dentler
Chaitanya Dev Büsra Eris
David Fischer Michèle Gleser
Alexander Greiner Constantin Jehn
Simone Kellermann Kilian Kleeberger
Björn König Markus Lohmayer
Moritz Manert Pirmin Molz
Nils Mößner Arlette Ngnogue

Philip Nöh Burak Ölcer
Mehdi Rezaiepour Laura Ruhland
Sebastian Scheiterer Karin Schol
Patrik Steck Felix Töpfer
Minh Tam Truong Prabhu Vijayan
Marcia Weigand Thomas Will
Jinyu Zhang Wuyang Zhao
Lukas Zikeli

Student assistants are mainly active as tutors for young students in basic and advanced lectures at the
Bachelor and Master level. Their contribution to high quality teaching is indispensable, thus financial
support from various funding sources is gratefully acknowledged.
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3 Research

3.1 Biomechanics Workshop

On the 5. September, 2017, the Chair of Applied Dynamics (LTD) hosted a workshop on Biomechanics
from participants affiliated to the LTD, lead by Prof. Sigrid Leyendecker and the Fraunhofer Institute
for Industrial Mathematics (ITWM), headed by Dr. Joachim Linn. The workshop began with a
talk from Dr. Michael Roller (ITWM) presenting his work on “Using optimal control to simulate
the movement of assembly workers” and followed by a talk on behalf of his colleague, Mr. Marius
Obentheuer (ITWM) on the topic “Application of muscle synergies in optimal control of a human
arm model”. The next talks were given on the topic of “Towards the optimal control of two finger
grasping” by Mr. Uday Phutane (LTD), “Dynamic analysis with fuzzy uncertainty” by Mr. Markus
Eisentraudt and “Control systems and robotics” by Dr. Toufik Bentaleb. The talks were followed by
discussion on the theme ‘Discrete Mechanics for Cosserat rods’, followed by a nice dinner at ZEN Bar.

3.2 Rat heart project

The rat heart project is a research cooperation between the Chair of Applied Dynamics and the
Pediatric Cardiology at University of Erlangen Nürnberg and is funded by the Klaus Tschira Stiftung.
The goal of the project is to explore the heart function on pathological and normal conditions by
developing a computational model of a rat heart which will be validated with realistic experiments at
the Pediatric Cardiology. Consequently, a support heart system, for example, vascular assist system
and/or artificial muscles can be properly designed and attached to and/or inserted into the rat heart
for improving heart functioning, respectively. In the framework of the project, a research team is hence
established to develop a computational heart model. Two master theses and one project thesis were
completed with significant contributions. There are three ongoing master theses on the right tracks and
the rat heart project still offers two more master topics concerning enhanced electrophysiological and
excitation-contraction models for further investigations such as influence of the multiscale modelling
(microscale such as cells and drugs to macroscale-tissue behaviour) on the heart function.

3.3 BMBF 05M2016 - DYMARA

The Federal Ministry of Education and Research (BMBF) promotes cooperation between universities
and companies in the new funding priority ‘Mathematics for Innovation’. ‘Healthy Life’ is the motto of
the current promotional campaign. The joint project 05M2016 – DYMARA is coordinated by Professor
Dr. Bernd Simeon from Technische Universität Kaiserslautern (UNIKL) and has a thematic relation
to ergonomics and health promotion at work. The aim of the project is to develop an innovative digital
human model with detailed skeletal muscle modelling and fast numerical algorithms for fundamental
research. As part of the collaborative project, the LTD investigates muscle paths in the biomechanical
simulation of human motion and the integration of new fiber-based muscle models to multi-body
dynamics while the UNIKL is developing a continuum mechanical muscle model. The project partner
Dr. Michael Burger from the Fraunhofer-Institut für Techno- und Wirtschaftsmathematik (ITWM)
is focusing on the optimal control of the complete digital human model. Industrial partners are
MaRhyThe-Systems GmbH & Co. KG. and flexstructures GmbH.

3.4 Scientific and academic honors

Holger Lang took the second place for his lecture ‘Theoretische Dynamik’ in the category VP5 as part
of the Teaching Evaluation of the Sommersemester 2017.
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3.5 Scientific reports

The following pages present a short overview on ongoing research projects pursued at the Chair of
Applied Dynamics. These are partly financed by third-party funding (German Research Foundation
(DFG), The Federal Ministry of Education and Research (BMBF), Bavarian Environment Agency
(LfU), Deutsche Telekom Stiftung) and in addition by the core support of the university.

Research topics

Hierarchical, hydrogen bond encoded protein motions
Dominik Budday, Sigrid Leyendecker, Henry van den Bedem

Computational modelling of cardiac muscles of a rat heart
Minh Tuan Duong, Sigrid Leyendecker

A variational integrator for constrained mechanical systems with pulsed disturbances and optimal
feedback control
Daniel Glaas, Sigrid Leyendecker

Numerical convergence analysis of higher order multi-symplectic Lie-group variational integrators for
geometrically exact beam dynamics
Thomas Leitz, Sigrid Leyendecker

Optimal control of a slot car racer using a discrete variational principle
Johann Penner, Tristan Schlögl, Sigrid Leyendecker

Optimal control simulations of two finger grasping
Uday D. Phutane, Michael Roller, Sigrid Leyendecker

A polarisation based approach to model strain dependent electrostatic pressure of dielectric elastomer
actuators
Tristan Schlögl, Sigrid Leyendecker

Variational integrators of mixed order for constrained multirate systems
Theresa Wenger, Sina Ober-Blöbaum, Sigrid Leyendecker
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Hierarchical, hydrogen bond encoded protein motions

Dominik Budday, Sigrid Leyendecker, Henry van den Bedem1

Protein rigidity analysis can provide fast insights into conformationally coupled regions and flexibil-
ity in the molecule. However, common constraint-counting approaches to rigidity are based on the
topological pebble game algorithm [1] and have two significant limitations. First, missing geometric
information hides the kinematics of internal motions, restricting results to a number of degrees of
freedom and flexibility indices. Second, the analysis is highly dependent on a set of non-covalent
interactions used as input to rigidity analysis. Overall, this limits applicability and comparability to
dynamic, normal mode analysis (NMA) or their simplified elastic network model (ENM) variants.
Here, we detail that the hydrogen bonding pattern, a common input to rigidity analysis, encodes a
hierarchy of motions beyond the rigid cluster decomposition. Given the constraint Jacobian J with 5m
hydrogen bond constraints and d dihedral angles, we identify two disjoint subspaces for joint velocities
from the singular value decomposition (SVD) JV = UΣ, where U = [u1, . . . ,u5m] =∈ R5m×5m and
V = [v1, . . . ,vd] =∈ Rd×d. The rectangular matrix Σ = diag(σ1, . . . , σp) ∈ R5m×d, p = min(5m, d)
contains the singular values σi on the diagonal axis, where σ1 ≥ . . . ≥ σr > σr+1 = . . . = σp = 0
and r the rank of J. The corresponding ui and vi are termed the ith left and right singular vector,
respectively. Then, we term

range(JT ) = span{v1, . . . ,vr} =: R,

null(J) = span{vr+1, . . . ,vd} =: N, (1)

denoting the range R and nullspace N, respectively. These two subspaces provide physically distinct
insights. Since ui and vi are orthonormal vectors, σi represent non-orthogonality between J and vi. In
other words, they encode the norm of constraint perturbation when moving along vi. For motions in
N, this perturbation is zero, encoded by the vanishing singular value. We have previously shown that
the nullspace yields an identical, yet more informative rigid cluster decomposition [2] than traditional
topological approaches, with the nullspace dimension representing the number of internal degrees of
freedom, often termed floppy modes. The kinematics of these floppy modes, coupled to sophisticated
motion planners with dynamic, Clash-avoiding Constraints (dCC) revealed conformational transitions
in proteins [3], the role of secondary structure in RNA conformational changes [4], and coupled loop
motions important for biological function in dehydrofolate reductase (DHFR) [5].

Figure 1: Singular values track geomet-
ric and energetic hydrogen bond pertur-
bation, shown for one example (A, PDB
ID 1p5f) and a large, diverse dataset
with 183 proteins (B). Perturbations are
computed from stepping along individual
motion modes vi (step size 1e − 5) and
show a conserved distribution, displaying
the predictive power of σ.

The range R of JT provides a spectrum of motions ranked by increasing constraint perturbation.
Consistent with the notion in penalty methods, the singular value σi ≥ 0 denotes a penalty associated
with collectively perturbing constraints when moving along singular vector vi. Interestingly, this

1Division of Biosciences, SLAC National Accelerator Laboratory, Stanford University, California, Menlo Park, USA

Chair of Applied Dynamics, Annual Report 2017 10



3 Research

Figure 2: Hierarchical constraint pertur-
bation in α-helices (A panels) and anti-
parallel β-sheets (B panels). The two top
panels plot the matrix JV, ranking sin-
gular vectors (columns) across individual
hydrogen bonds (rows) and associated
constraint perturbation in color increas-
ing from purple to yellow. Bottom pan-
els depict example motion modes from
indicated columns, with increasing over-
all constraint perturbation. The color
pattern follows associated entries in vi,
showing increasing changes of degrees of
freedom from blue to red.

penalty tracks collective hydrogen bond geometry and energy perturbations across a large set of
proteins from the Protein Data Bank (PDB) (Fig. 1), computed from the geometric constraints and
the Mayo potential [6], respectively. We physically demonstrate this hierarchy for an α-helix and
a β-sheet (Fig. 2), ranging from local fluctuations to more collective motions such as superhelical
twisting of the helix, or sheet shearing. Compression and tension in the α-helix perturb the hydrogen
bonds significantly, suggesting unraveling as the more favorable mode of unfolding, which agrees with
more detailed molecular dynamics simulations [7]. Overall, we expect this hierarchy to correlate
with experimentally determined hydrogen-deuterium exchange and be related to temperature-based
fluctuations in the molecular free-energy landscape.
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Computational modelling of cardiac muscles of a rat heart

Minh Tuan Duong, Sigrid Leyendecker

Computational modelling is essential to better understand the function of rat hearts under pathological
and normal conditions. In this work, the electromechanics of cardiac muscles, which is the basis for
the contraction of the heart, is addressed for a rat left ventricle (LV) and biventricular model (BV). A
3D geometry of a rat LV and a BV are first constructed from MRI images provided by the Pediatric
Cardiology in Erlangen. Fibre orientation maps are then computed approximately for the LV and
BV to account for cadiac muscle directions which are important for their orthotropic mechanical
and electrical properties. Specifically, we use FitzHugh-Nagumo and Aliev-Panfilov models for the
oscillatory pacemaker and non-oscillatory cardiac muscle cells to model electric potential based on
the monodomain formulation [1]. Finally, the fully coupled model for the electromechanics of the
LV and BV are developed by employing the active stress approach. Cardiac muscles are commonly
aligned on sheet planes distributed in the ventricular wall hellically with respect to the longitudinal
axis of the heart. Furthermore, the fibre angle with respect to the local circumferential direction
varies from the endocardium to the epicardium, so-called boundary surfaces ∂Bθ (60◦ to -60◦ for
rat). Consequently, the components of the fibre vector f0 and the sheet vector s0 can be interplolated
through the ventricular wall-thickness by solving the Laplace equation for each scalar-component value
θ of these vectors; ∆θ = 0 in B with the Dirichlet boundary conditions θ = θ̄ on ∂Bθ [2], see Figure
1. A structurally based passive material law (Holzapfel-Ogden) for the LV and BV is described as

W =
a

2b
eb(I3−3) +

∑
i=f,s

ai
2bi

[
ebi(I4i−1)2 − 1

]
+

afs
2bfs

[
ebfs(I8fs)

2

− 1
]
, (1)

where a, b, ai, bi, for i = s, f and afs, bfs are material constants; I3, I4i, and I8fs are the invariants of
the right Cauchy-Green tensor, see [3] .

Figure 1: Whole heart mesh model, fibre orientations (LV and BV) and Purkinje network (LV).

The material parameters can be obtained by fitting the model to experimental data from mechanical
testing, such as biaxial tests and shear tests. If the experiments provide sufficient information, the
material constants are more accurate and the predictions of LV and BV behaviour are closer to reality.
Furthermore, the fast conducting Purkinje fibre network is reconstructed for the LV and BV (Figure
1). This accounts for the synchronous activation of all muscle cells during a heartbeat. In addition,
the electrical potential of the LV can be represented in a form of the reaction-diffusion equation
(a parabolic problem) with oscillatory pacemaker (p) cells modelled by the FitzHugh-Nagumo and
non-pacemaker (np) cells by the Aliev-Panfilov model

φ̇ = Div(q) + fφ(φ, r), fφp = c[φ[φ− α][φ− 1]− r], fφnp = cφ[φ− α][φ− 1]− rφ (2)

ṙ = f r(φ, r), f rp = φ− br − a, f rnp = [γ +
µ1r

µ2 + φ
][−r − cφ[φ− b− 1]], (3)

with action potential φ, recovery variable r, electric flux q = D · ∇(φ), conductivity tensor
D = disoI + danif0⊗ f0, fibre unit vector f0, identity tensor I, isotropic and anisotropic (along fibres)
conduction diso, dani and model constants a, b, c, α, µ1, and µ2, see [1].
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Figure 2: Potential of pacemaker cell at A, non-pacemaker cell at B (left), and the LV, BV (right).

The FitzHugh-Nagumo model is derived based on a phenomenological approach since it captures the
potential evolution using only two variables describing the fast stroke and the relaxation phase. It is
unable to investigate influences from the micro level (cells, drugs) on the macro level (muscle tissues).

Figure 3: Displacement-potential curve (left), resting and contraction of the LV, section view,
fibrillation and infarcted region (right).

A fully coupled model is obtained by coupling the equations (2) and (3) with the mechanical quasi-
static form of the first Piola-Kirchhoff stress Div(P) = 0 in B. The excitation-contraction model
is based on the active stress approach as P = Ppas + Pact(u, T

act) where the passive stress is Ppas

and its active counterpart is Pact as a function of the displacement u and the active muscle traction
T act defined by Ṫ act = ε(φ)[kσ(φ − φr) − T act], in which ε(φ) determines a smooth activation, kσ
and φr control the maximum active force and resting potential, respectively. The active stress is
introduced as a result of electrical stimulation Pact = T act[νfff0⊗ f0 + νsss0⊗ s0] where νff and νss
are the weighting factors for active stress generation. In Figure 3, the results shows the interaction
of excitation and contraction in the LV using the above electromechanical model. The fibrillation of
the LV and an infarcted BV, which often occur in pathological conditions, is depicted in Figure 3
(right). To cure the disfunctions, the electrical wave needs to be stabilized by an artifical pacemaker.
To improve the heart pumping ability the improvement and development of certain vascular assistant
systems are necessary. Generally, in the next steps the numerical simulation results such as pressure-
volume curves, displacements or potential can be compared with experimental data provided by the
Pediatric Cardiology in Erlangen.

References
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A variational integrator for constrained mechanical systems
with pulsed disturbances and optimal feedback control

Daniel Glaas, Sigrid Leyendecker

The following article provides a summary of [4], including literal excerpts.

Variational integrators and DMOC Today, a lot of mechanical systems have to operate with an
improved performance compared to equal constructions decades ago. To stay competitive, engineers of
a mechanical system need to guarantee its optimal operation. This includes both offline optimisation of
a desired trajectory as well as online feedback control for eliminating perturbations from the optimal
trajectory. In the simulation here, the variational integrator as a variant of a structure-preserving
integration scheme is used. A forward rectangular rule is used to approximate the action in one time
interval via a discrete Lagrangian Ld(qk, qk+1) ≈

∫ tk+1

tk
L(q(s), q̇(s))ds with configuration sequence

qk ≈ q(tk) for k = 0, . . . , N . The configuration q(t) is approximated by a linear polynomial and the
velocity by finite differences. Applying a discrete variational principle δSd({qk}Nk=0) = 0, see [1], and
an approximation of the virtual work F±d (qk, qk+1, uk) with control sequence {uk}N−1

k=0 , the Lagrange-
d’Alembert principle yields a discrete Euler-Lagrange equation in a ”position-momentum form that
only depends on the current and future time steps” [2]. Part of the virtual work is the discretisation
of a pulsed disturbance force Fz(t), see [5], acting at time node t′ ∈ [tk, tk+1) and being defined as
Fz(t) = Ft′δε(t−t′). To compute the desired trajectory, initial and final conditions on the configuration
and conjugate momentum, together with the discrete equations in minimal coordinates, serve as non-
linear equality constraints for the minimisation of a given objective functional. Applying the DMOC
(discrete mechanics and optimal control [3]) algorithm, an optimal trajectory and according control
input is calculated. The DMOC solution serves as desired trajectory also for formulation in redundant
and nullspace coordinates, their movement is forced to the manifold by using holonomic constraints
g(q(t)) = 0, G(q) = ∂g(q)

∂q and a nullspace matrix P (q) with P T (q) ·GT (q) = 0.

Riccati-controller Even when knowing an optimal trajectory xopt =
[
qopt popt

]T
of a system, in

reality the mechanical system will not follow the predefined path because of several perturbations.
The correction of these are done by feedback controllers. The key issue is to add an additional control
uR,k to the optimal control input uk = uopt,k + uR,k. Here, uR,k is calculated by a linear feedback
multiplication of a feedback matrix Kk with exk , i.e. uR,k = Kkexk , with the error exk = xopt,k − xk
being the difference between the desired state xopt and the ”measured” state x. The resulting block
structure is shown in Figure 1.
In the context of the optimal control approach, the Riccati feedback controller is commonly used to
minimise a cost-function V = Vpen + Veff =

∑N
k=0 e

T
xk
Qkexk +

∑N−1
k=0 uTR,kRkuR,k with (semi-)positive

definite weighting matrices Qk and Rk. After linearising the system to δxk+1 = Akδxk + Bkδuk,
the discrete Riccati equation for non-constant Ak and Bk is applied [6]. Equation (1) is evaluated
backwards in time, the initial value is PN = QN . After that, the matrix Kk as defined in (2) and the
optimal additional control input uR are calculated.

Pk = ATk Pk+1Ak −ATk Pk+1Bk(B
T
k Pk+1Bk +Rk)

−1BT
k Pk+1Ak +Qk (1)

Kk = (BT
k Pk+1Bk +Rk)

−1BT
k Pk+1Ak (2)

Numerical results The described algorithm is applied to several full- and under-actuated systems,
for example the under-actuated double pendulum on a cart (cf. Figure 2). The comparison of the
Riccati-control algorithm with different coordinate choices, i.e. minimal, redundant, and nullspace
coordinates, is done for an optimal upswing from θ0

1 = θ0
2 = π to θN1 = θN2 = 0 with x0

0 = xN0 = 0

Chair of Applied Dynamics, Annual Report 2017 14



3 Research

storage
+

+

dynamic
system

Kk

−+

uopt,k uk

xopt,k

xk

xk

zk

exk

uR,k

Figure 1: General feedback control 0 0.5 1

−1

−0.5

0

0.5

1

x

y

Figure 2: Optimal reference up-
swing

0 0.5 1 1.5 2
0

1

2

3

·105

time (sec)

fe
ed

b
a
ck

eff
o
rt

(J
)

effortmin
effortred
effortnull

Figure 3: Control effort

calculated in DMOC. The result for a simulation time of T = 2s and time step ∆t = 0.002s is plotted
in Figure 2. The blue (red) line represents the first (second) pendulum. Stepping forward in time, the
lines become thinner and richer in contrast.
At time t′ = 0.2s, a perturbation with the value pz =

[
0.01Ns 0.01Nms 0.1Nms

]T
acts on the

system. The controlled trajectories of all three implementations are very similar to each other. In
Figure 3, the control effort Veff is plotted for all three coordinate choices. Beginning at t = t′, all
graphs are strictly increasing as being a sum of positive terms, the gradient corresponds to the control
forces. The absolute values differ between all three coordinate choices, but an adequate qualitative
behaviour is ensured as cost increases and force peaks occur at the same time for all three cases. After
t = 1.0s, the perturbation is eliminated.
In summary, we have implemented a Riccati feedback controller for constrained variational integrators.
Both the optimal control problem and the Riccati controller are based on the same structure preserving
discrete equations of motion. With this approach, a stable handling of highly-nonlinear systems is
assured. The feedback control effort reveals that all three coordinate parametrisations only differ
slightly. Thus, different choices of coordinates can be used in the feedback control and in the optimal
control problem, which might be useful in practice.
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Numerical convergence analysis of higher order multi-symplectic Lie-group variational
integrators for geometrically exact beam dynamics

Thomas Leitz, Sigrid Leyendecker

Multi-symplectic variational integrators are derived by discretizing the action functional of a given dynamical
system and applying the discrete Hamilton’s principle. This results in the discrete Euler-Lagrange equations,
which represent the integrator. In general, they are a non-linear system of equations, which can be solved using
e.g. a Newton-Raphson scheme.
In geometrically exact beam dynamics, the deformation map is defined on a two-dimensional space time, where
space represents the arc length parameter. The cross sections of the beam are assumed to be rigid. The
configuration space is the euclidean space, i.e. the cross sections along the beam have six degrees of freedom –
three for the position and three for their orientation.
The discretization of the action functional is done by first discretizing the two-dimensional space time into a
regular grid, called the main grid, with A − 1 elements in space and J − 1 elements in time. Each space time
element of the main grid is further discretized into a regular subgrid with K elements in space and L elements
in time.
With the Lagrangian density L : [0, T ]× [0, L]→ R, the discrete Lagrangian is an approximation of the action

functional of one space time element Lja ≈
∫ sa+1

sa

∫ tj+1

tj
L (q (s, t) , ∂tq (s, t) , ∂sq (s, t)) dtds and the discrete action

is therefore the sum over all discrete Lagrangians Sd =
∑J−1
j=0

∑A−1
a=0 Lja.

Parameterization and interpolation We parameterize the euclidean space by using unit dual quaternions
which are defined as H̃1 =

{
pr + εpε | pr, pε ∈ H, 〈pr, pr〉 = 1, 〈pr, pε〉 = 0, ε2 = 0

}
. Every unit dual quaternion

can be written as p̃ = p + ε
2xp ∈ H̃1, where the orientation is encoded in the unit quaternion p and the

position is represented by the purely imaginary quaternion x. The interpolation over (K + 1) (L+ 1) unit dual

quaternions p̃k is done by building the weighted sum and subsequently normalizing, i.e. p̃ (s, t) = P̃

‖P̃‖ with

P̃ =
∑K
k=0

∑L
l=0W

l
k (s, t) p̃k = Pr + εPε, where s and t are the space and time parameter, respectively. This

interpolation method avoids shear locking of the beam.

Discrete Euler-Lagrange equations The integral of the discrete Lagrangian is approximated using the in-
terpolation defined above and choosing a suitable quadrature rule. The Lie-group structure preserving variation
of a funciton f : H̃1 → R is defined using the exponential map i.e. δf (p̃) = d

dε

∣∣
ε=0

f (p̃ exp (εη̃)). With that in
mind, the discrete Hamilton’s principle results in the discrete Euler-Lagrange equations. These are solved using
a Newton-Raphson scheme with iterative reparametrization involving the Cayley map for unit dual quaternions
in order to avoid constraint functions.

Results The simulation of a beam was carried out with different time steps ∆t, different space steps ∆s, as
well as different polynomial degrees in time K and space L. Figures 1a and 1b show the convergence of the
integrator for time and space refinement with constant polynomial orders L and K. The errors are of order
O
(
∆t2L

)
and O

(
∆s2K

)
, respectively.

Figures 1c and 1d show the convergence of the integrator for K and L polynomial refinement with constant
time and space steps ∆t and ∆s. The errors are of order O

(
ΓLl
)

and O
(
ΓKk
)
, respectively.

Conclusion We derived a multisymplectic Lie-group variational integrator of arbitrary order based on unit
dual quaternion interpolation for the simulation of geometrically exact beam dynamics. The order of the
integrator depends solely on the polynomial degree of the interpolation, paired with an appropriate quadrature
rule used to compute the discrete Lagrangian.
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(a) time refinement (b) space refinement

(c) K refinement (d) L refinement

Figure 1: Convergence plots
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Optimal control of a slot car racer using a discrete variational principle

Johann Penner, Tristan Schlögl, Sigrid Leyendecker

In order to describe and control the behavior of a slot car racer, a suitable simulation model is required. The
functional principle of this electric vehicle merges mechanics and electronics and can generally be described
in terms of differential equations by physical laws, such as Faraday’s law, Coulomb’s law, Kirchhoff’s law and
d’Alembert’s principle. These second-order differential equations can be obtained via a variational principle
based on an energy functional [1, 2]. The optimal control simulation method in this work is a direct discretisation
technique for mechanical systems – that has been extended for mechatronical systems – known as DMOC [5]
and is based on a discrete variational principle. The derivation of the system dynamics with discrete variational
calculus requires to formulate the electrical, magnetic and mechanical energy of the system and to apply the
discrete Lagrange-d’Alembert principle. This is less common in electrical engineering but leads to a structure
preserving time stepping scheme which serves as equality constraints for the nonlinear programming problem,
resulting from the discretisation of the optimal control problem by DMOC [3, 4, 5, 6]. The computed optimal
voltage profiles are embedded into an experimental setup for a slot car racer with an underlying camera tracking
system which allows to correct the vehicle towards the desired state via a computer.

Figure 1: Idealized model of a DC motor
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Figure 2: Driving voltages versus track position

According to the discrete variational principle, we choose a time grid ∆t = {t0, t1, ..., tN} for the discrete

path qd = {qn}Nn=0 with step size h ∈ R and the midpoint rule for the approximation of the integrals in the
Lagrange-d’Alembert principle. The discrete forced Euler-Lagrange equations for n = 1, ..., N − 1

D1Ld(qn,qn+1) +D2Ld(qn−1,qn) + f−d (qn,qn+1,un) + f+d (qn−1,qn,un) = 0 (1)

follow from the discrete Lagrange-d’Alembert principle, where D•Ld is the slot derivative with respect to
the •-th argument and fd are the discrete forces. The discrete momenta are given by the discrete Legendre
transformation as p−

n = −D1Ld(qn,qn+1) − f−d (qn,qn+1,un) and p+
n = D2Ld(qn−1,qn) + f+d (qn−1,qn,un),

where p−
0 is used for the first time step. The DMOC method deals with the problem of finding the discrete

control forces ud = {un}N−1
n=0 with respect to a given system – in terms of discrete Euler-Lagrange equations –

such that a certain discrete objective function Jd or, respectively, a discrete cost function Cd is minimized, i.e.

min
qd,ud

Jd(qd,ud, h) = min
qd,ud,h

N−1∑
n=0

Cd(qn,qn+1,un, h) subject to
· equation (1)
· initial and final conditions
· additional constraints

(2)

Assuming that the considered slot car has an idealized DC motor (see Figure 1), the discrete path qd ={
[Qn, ϕn]T

}N
n=0

comprises the total amount of moving electric charge Qn, that has passed any point of the
motor windings – where ϕn denotes the rotation angle – at each time step. The discrete control parameter ud =
{Un}N−1

n=0 is reduced to a sequence of driving voltages Un and the current In is defined as flow electric charges
over time. In the case of a DC motor, the Lagrangian consists only of the magnetic-field co-energy and the
mechanical energy of the motor shaft, such that the discrete Lagrangian reads

Ld(qn,qn+1) =
h

2

{
La
h2

(Qn+1 −Qn)
2

+
K

2h
(ϕn+1 + ϕn) (Qn+1 −Qn) +

θ

h2
(ϕn+1 − ϕn)

2

}
(3)

where θ denotes the inertia of the rigid motor shaft, La is the inductance of the windings and K is a machine
constant. The discrete forces (with arguments as in equation (1)) are given by

f−d =

[
hUn + Ra

2 (Qn+1 −Qn)
h
4 (Mn+1 +Mn)

]
f+d =

[
hUn − Ra

2 (Qn −Qn−1)
h
4 (Mn +Mn−1)

]
(4)
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with the external friction torque Mn = r
i (Fc tanh(vn) + τvvn) and the power dissipation −RaIn. Herein, a

continuous velocity-based friction model – with sliding friction Fc and the viscous friction parameter τv –

approximates the friction force acting of the slot car. The current is written as a finite difference In = (Qn+1−Qn)
h .

Under the assumption of a rolling wheel with radius r and the gear ratio of the slot car i, we can compute
the velocity vn = r

i
ϕn+1−ϕn

h and the covered distance sn+1 = sn + vnh of the vehicle. For this electro-
mechanically coupled system the general momenta pn = [pQn , p

ϕ
n]T consist of the flux linkage pQn and the

mechanical momentum pϕn at each time step. The time-minimal path can be modeled using different cost
functions, where the problem of minimizing the lap time is equivalent to maximizing the velocity – or momentum
– for each lap. Within this work, we concentrate on a combined objective function Jd that minimizes the lap
time – which corresponds to the sum of time steps – together with the change of driving voltages.

Jd(qd,ud, h) = cu

N−1∑
n=0

(
Un+1 − Un

h

)2

+
N∑
n=0

h (5)

Herein, the weighting factor cu ∈ R ensures that the influence of lap time and driving voltages on the cost
function are of the same order of magnitude. Furthermore, we can substitute the sum of time steps Jt with the
negative sum of the quadratic velocities Jv or the negative sum of the quadratic momenta Jp.

Jt(h) =
N∑
n=0

h Jv(qd, h) = −
N−1∑
n=0

(
sn+1 − sn

h

)2

Jp(qd, h) = −
N−1∑
n=0

(
pϕ−n

)2
(6)

The calculated optimal driving voltages for the time minimal path respecting the maximal admissible velocity
for the race track are shown in Figure 2.
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Optimal control simulations of two finger grasping

Uday D. Phutane, Michael Roller2 , Sigrid Leyendecker

Introduction Grasping is a basic, though complex human movement performed with the hand through its
many degrees of freedom. During grasping, when the hand closes around the object, the multibody system
changes from a kinematic tree structure to a closed loop contact problem. To better understand work-related
disorders or optimize execution of activities of daily living, an optimal control simulation to perform grasping
would be useful. The optimal control problem in this work is solved using the direct transcription method
DMOCC (discrete mechanics and optimal control with constraints), see [4], leading to a structure preserving
approximation. The contact mechanics is realised using spherical joints, see [3], as opposed to using a penalty
potential.

1

2

3

4

5

6

7
8

Figure 1: The two finger model with the
object to be grasped.

joint cardan nino revolute fixed

1 7

2 7

3 7

4 7

5 7

6 7

7 7

8 7

Table 1: The table lists the different joints used in the model.

To understand the mechanics of grasping for the complete hand, a simplified two finger model is a good start.
The multibody system simulated here is made up of the wrist along with the thumb and index finger, as
shown in Figure 1. The model is constituted through different joint descriptions, such as the cardan, nino
(non-intersecting, non-orthogonal axes, described in [1]), revolute and fixed joints, as listed in Table 1. Using
the multibody formulation described in [2], the model is described with a redundant configuration variable, q,
with internal constraints mint and external constraints mext, in effect reducing the system to eleven degrees of
freedom. The model is actuated using joint torques. The dynamics of the object, in this case a box, is also
taken into account for grasping, which adds another six degrees of freedom for its dynamics.

The grasping movement is composed of a reaching phase (no contact between the fingers and the object)
and a grasping phase (closed contacts), see Figure 2. In the first phase, the fingers, described through the
open kinematic chains, approach the surfaces of the object to be grasped. The discrete Euler-Lagrange (DEL)
equations to describe the dynamics are obtained using the variational principle along with the discrete nullspace
matrix P , PB , see [2], for the hand and the object, respectively. Additionally, we employ the discrete nodal
reparameterisation to further reduce the number of equations of motion for the hand. At time node Nk, the
contact is closed through gap functions gc1 and the contact points on the object are defined within the surface

0 1 · · · Nk − 2Nk − 1 Nk Nk + 1Nk + 2 N − 1 N· · ·n :

reaching phase k nodes grasping phase mnodes

qBN

pN

q0

qB0

p0

pB0
gc1

(
qk, q

B
k

)
= 0

h%

(
qk, q

B
k

)
≤ 0

P T ·
[
· · ·DEL · · · −GT · λc

]
= 0

P T ·
[
· · ·DELB · · · −GB,T · λc

]
= 0

gc2
(
qn+1, q

B
n+1,%

(
qk, q

B
k

))
= 0

P T · [· · ·DEL · · · ] = 0

PB,T ·
[
· · ·DELB · · ·

]
= 0 Figure 2: Time

grid with dynam-
ical constraints of
the optimal con-
trol problem.

2Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany
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limits h%. In the following phase, the contact is maintained through spherical joints gc1 forming a closed loop.
The DEL equations for this phase get modified to represent the contact forces on the two systems, which are
described through the contact constraint Jacobians G, GB and Lagrange multipliers. The duration of the two
phases are also obtained as a result of the optimal control problem. This constitutes a hybrid dynamical system
with a known switching sequence with unknown switching times.

Example We execute an optimal control simulation to perform a lateral pinch (like holding a key), between
the thumb pulp (one contact point) and radial side of the medial phalange (two contact points), as shown in
Figure 3. The boundary conditions are with fixed initial configurations for the hand and the object and to
perform a rest-to-rest manoeuvre. The objective function minimised is a linear combination of the sum of the
squares of joint torques and the rate of change of the joint torques.

Figure 3: The progression of the grasp ma-
noeuvre from initial position to contact clos-
ing with the finger-fixed contact points (∗)
on the object surfaces and lifting it to the
final position (from left to right). The con-
tact is closed at time node Nk = 5 and have
Nm = 4 time nodes to perform the grasping
action.
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A polarisation based approach to model
strain dependent electrostatic pressure of dielectric elastomer actuators

Tristan Schlögl, Sigrid Leyendecker

Introduction Dielectric elastomer actuators (DEAs) are composed of an elastic dielectric material that is
sandwiched between two compliant electrodes, as illustrated in Figure 1. When the electrodes are charged by
applying an electric potential, charges with opposite signs attract each other, leading to a contractive force
also known as electrostatic pressure [1]. When several DEA cells are stacked on top of each other, resulting
in a pile-up configuration, the electrostatic pressure provides macroscopically useful displacements [2]. Stacked
DEAs are also referred to as artificial muscles, because they bear analogy to the behaviour of human muscles
in terms of contracting in length direction when stimulated.

The behaviour of artificial muscles can generally be described by considering coupling forces between the applied
electric field (whose distribution has to fulfil the Maxwell equations for electrostatics) and the deformation
gradient (that is characterised by the mechanical momentum balance) as shown by Dorfmann et. al. in 2005 [3].
In 2007, Vu et. al. [4] solved the equations proposed by Dorfmann for arbitrary geometries in the static case,
numerically simulated using the finite element method. The static formulation of Vu was extended by inertia
terms that allow for dynamic motion and structure preserving time integration by Schlögl et. al. in 2016 [5].
Even though these models provide a powerful tool to solve electromechanically coupled and dynamic problems of
arbitrary geometry, the computational cost is quite demanding. To find solutions for complex control problems
where a multibody system is actuated by several muscles at the same time as in [6], it is necessary to make use
of lumped parameter models that reduce the computational cost.

Common modelling approach The following derivation of the electrostatic pressure is inspired by [7],
where the interaction between electrical and mechanical quantities is examined via the principle of virtual
work. As illustrated in Figure 1, the two compliant electrodes with surface area A(z) enclose the dielectric
with permittivity εr. When a constant voltage U is applied, the electrodes get charged with the amount Q(z),
depending on the distance between the electrodes z. The contractive force between the capacitor plates is
assumed to be acting in z-direction only, with its z-component given by F (z). All quantities are either constant
or depend only on the distance z, hence the dimension of the lumped parameter model is reduced to one degree
of freedom. Moreover, all quantities are assumed to be quasi-static, neglecting any time dependent effects.

The unknown force F (z) can be calculated by applying the principle of virtual work

δW ext(z) = δW elec(z) + δWmech(z), (1)

requiring an infinitesimal amount of energy brought into the system via the external power supply δW ext(z)
to be identical with the change of energy stored in the system, separated into electrical energy δW elec(z) and
mechanical energy δWmech(z). For the capacity of a parallel plate capacitor and constant volume V = A(z) z
(due to the incompressibility of the dielectric and compliant electrodes), the contractive force is given as

F (z) = ε0εrA(z)
U2

z2
, (2)

with ε0 being the vacuum permittivity.

New polarisation based model Using the parallel plate capacitor formula in the previous section implic-
itly assumes linear polarisation within the dielectrics. Evaluating the principle of virtual work for arbitrary
polarisation P (z), the contractive force

F = A

(
ε0E

2 − 1

2
∂zPEz +

1

2
PE

)
(3)

is obtained, where the electric field is given by E = U/z. The polarisation P can be derived from an elec-
tromechanically coupled, hyperelastic material approach as shown in [3], such that the contractive force (3)
becomes

F = AE2
(
ε0 − 2c1 − 4λ−2c2

)
, (4)
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+ + + + + + + +
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A

Figure 1: Lumped parameter model of DEA cell. Figure 2: Relative permittivity measured by
Kofod [8] and new polarisation
based model fit.

where c1 and c2 are material parameters and λ = z/z0.

Figure 2 shows how the new model compares to measurement data. The material parameters are fitted using
a non-linear least squares trust-region algorithm provided by MATLAB’s curve fitting toolbox. The measured
relative permittivity is compared to the stretch dependent equivalent ε̃F of the polarisation based model. Note
that in the wide spread model first mentioned in [1], the relative permittivity is a constant quantity that does
not cover any stretch dependency at all.
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Variational integrators of mixed order for constrained multirate systems

Theresa Wenger, Sina Ober-Blöbaum3, Sigrid Leyendecker

The considered constrained multirate systems contain dynamics on different time scales caused by different
types of potentials. For the slow motion, a coarse approximation suffices, but to resolve the fast motion, high
accuracy is required. To avoid unnecessary computational costs, the idea is to use polynomials of different
degrees to approximate the slow and fast dynamics and quadrature formulas of different orders to approximate
the different action terms. The Lagrange multiplier theorem is used to introduce constraint forces constraining
the motion to the constraint manifold.

Consider an n-dimensional mechanical system, defined on the n-dimensional vector space Q, with time t de-
pendent configuration vector q(t) ∈ Q and velocity q̇(t) ∈ Tq(t)Q. Let the motion be dividable into fast and

slow components, such that ns slow variables qs ∈ Qs and nf fast variables qf ∈ Qf can be assigned, where
q = (qs, qf )T , Q = Qs × Qf , n = ns + nf . The Lagrangian L : TQ → R is supposed to be separable, reading
L(q, q̇) = T (q̇) − V (q) −W (qf ), and consists of a potential with different parts that lead to strongly varying
dynamics, split into a slow potential V and a fast potential W accordingly. We assume that V = V (q) depends
on the complete configuration and W = W (qf ) only on the fast configuration. Let the system be constrained
by the vector valued function g(q) = 0 ∈ Rm to the (n −m)-dimensional submanifold C = g−1(0). The con-
straints that depend only on the slow configuration are marked as gs = gs(qs). The term gsf = gsf (qs, qf )
includes the constraints that depend on the complete configuration or the fast configuration only. It is not
necessary to distinguish between the dependence on the complete or the fast configuration as the correspond-
ing constraints are treated identically in the discrete case. The Lagrangian is augmented by g(q) · λ, where
λ(t) ∈ Rm is the Lagrange-multiplier. The augmented Lagrangian L̄ : TQ × Rm is then written in the form
L̄(q, q̇, λ) = L(q, q̇)−gs(qs) ·λs−gsf (qs, qf ) ·λf , with g(q) = (gs(qs), gsf (qs, qf ))T and λ = (λs, λf )T , λs ∈ Rms

,

λf ∈ Rmf

, ms + mf = m. The time integral of the augmented Lagrangian over [0, T ] yields the augmented
action S̄ : C(Q × Rm) → R, with fixed endpoints q0, qN ∈ C and C(Rm) = C([0, T ],Rm) being the space of
curves λ : [0, T ] → Rm with no boundary conditions. For the construction of the variational integrators, the
action is approximated and Hamilton’s principle is applied, see e.g. [1]. The entire time interval [0, T ] is divided
into N subintervals [kh, (k + 1)h], k = 0, . . . , N − 1 of the same length h. Finite-dimensional function spaces
Πa are chosen to approximate the continuous curves on each of the subintervals, where Πa denotes the space
of polynomials of degree a. In particular, the polynomial qsd,k : [0, h]→ Qs, qsd,k ∈ Πps (resp. qfd,k : [0, h]→ Qf ,

qfd,k ∈ Πpf ) is an approximation for qs : [kh, (k + 1)h] → Qs (resp. qf : [kh, (k + 1)h] → Qf ). The poly-

nomial λsd,k : [0, h] → Rms

, λsd,k ∈ Πws (resp. λfd,k : [0, h] → Rmf

, λfd,k ∈ Πwf ) is an approximation for

λs : [kh, (k+ 1)h]→ Rms

(resp. λf : [kh, (k+ 1)h]→ Rmf

). A continuous approximation on [0, T ] is ensured by

qsd,k(h) = qsd,k+1(0), qfd,k(h) = qfd,k+1(0), λsd,k(h) = λsd,k+1(0) and λfd,k(h) = λfd,k+1(0), k = 0, . . . , N−1. Further-
more, different quadrature rules are used to approximate the contributions of the action on each time interval.

The discrete augmented Lagrangian L̄d,k(qd,k, q̇d,k, λd,k) = Ld,k − gd,k, with Ld,k(qd,k, q̇d,k) ≈
∫ (k+1)h

kh
L(q, q̇) dt

and gd,k(qd,k, λd,k) ≈
∫ (k+1)h

kh
g(q) · λ dt, reads

Ld,k(qd,k, q̇d,k) = h
rt∑
i=1

btiT (q̇sd,k(ctih), q̇fd,k(ctih))− h
rv∑
i=1

bvi V (qsd,k(cvi h), qfd,k(cvi h))− h
rw∑
i=1

bwi W (qfd,k(cwi h))

gd,k(qd,k, λd,k) = h
zs∑
i=0

esi g
s(qsd,k(fsi h)) · λsd,k(fsi h) + h

zf∑
i=0

efi g
sf (qsd,k(ffi h), qfd,k(ffi h)) · λfd,k(ffi h)

3Department of Engineering Science, University of Oxford, England
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3 Research

with qd,k = (qsd,k, q
f
d,k), q̇d,k = (q̇sd,k, q̇

f
d,k), λd,k = (λsd,k, λ

f
d,k) and quadrature nodes cji ∈ [0, 1] (resp. f li ∈ [0, 1])

and associated weights bji , j = t, v, w, c.f. [3] (resp. eli, l = s, f). For the calculation of gd,k, restrictions are given
that ensure the solvability of the corresponding discrete Euler-Lagrange equations (DEL) and stiff accuracy,

i.e. avoidance of the discrete solution to drift off C at the nodes qsd,k(0) and qfd,k(0), k = 1, . . . , N − 1. First, all

quadrature nodes fsi (resp. ffi ) have to be part of the time control points 0 = d̃s0 < . . . < d̃sws = 1 of λsd (resp. of

the time control points 0 = d̃f0 < . . . < d̃fwf = 1 of λfd). As a consequence, the number of unknowns equals the

number of equations in one time step. Additionally, fszs = 1 and ff
zf

= 1 lead to a stiffly accurate integration
scheme. The Lobatto quadrature entails this and is used here, yielding the restrictions ps ≥ ws and pf ≥ wf
that guarantee the linear independence of the discrete equations. See [2] for more details.

Computational efficiency The performance of the presented integrators is tested by means of a triple
pendulum (TP), see Fig. 1 (left). The position of the masses mi are described by the vectors qi ∈ R3,
i = 1, 2, 3. The motion of the big mass m1 is rather slow compared to that of the small masses m2 and
m3 that are linked by a very stiff linear spring, yielding a quadratic fast potential W (q2, q3). The norm
of the gravitation a = − 1

8 ((q1 − q2) · e3)4e3 varies with the fourth power, such that the gravitational en-
ergy associated with the slow potential V (q1, q2, q3) is highly nonlinear. The constraint gs(q1) constrains
m1 to a sphere with radius l1, while gsf (q1, q2) prescribes the distance between m1 and m2 to be l2.

aaa run-time
10

1
10

2

e
f q

10
-10

10
-8

10
-6

10
-4

ps=3 pf=3 oV=6 (Gauss)

ps=3 pf=3 oV=4 (Gauss)

ps=2 pf=3 oV=4 (Gauss)

ps=2 pf=3 oV=2 (Lobatto)

Figure 1: TP (left): Error of fast configuration over run-time (right)

One approach to save run-time
is to reduce the degree ps of
the polynomial qsd while keeping

a higher degree pf of qfd , as
the number of unknowns in the
DEL then decreases. Further-
more, reducing the order oV of the
quadrature formula used to ap-
proximate the integral of the slow
potential V reduces the number of
costly evaluations of the Jacobian
∇V (q). With the trapezoidal rule, even more run-time can be saved, because the Hessian of the slow potential,
used when solving the implicit DEL via an iteration scheme like the Newton-Raphson method, is not needed.
Simulating the constrained TP system, run-time savings can be achieved compared to the constrained high order
variational integrator ps = pf = 3, Gauss-quadrature rule of order 6 for all contributions of the Lagrangian
and ws = ps, wf = pf (turquoise plus signs), see Fig. 1 (right). The same accuracy (smaller than the Newton
tolerance 10−8) is reached by a decreased order oV of 4 (orange stars) in a faster way. Choosing ps = 2 together
with oV = 4 (Gauss, purple circles) or oV = 2 (Lobatto, green squares) leads to a slightly reduced accuracy.
Thus, for assessing the most efficient integrators the desired accuracy is crucial.
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4 Activities

4 Activities

4.1 Dynamic laboratory

The dynamic laboratory – modeling, simulation and experiment (Praktikum Technische Dynamik) adresses all
students of the Technical Faculty of the FAU Erlangen-Nürnberg. The aim of the practical course is to develop
mathematical models of fundamental dynamical systems to simulate them numerically and compare the results
to measurements on the mechanical system. Here, the students experience both the possibilities and limitations
of computer based modeling. The course starts with one central introductory programming task, followed by
six experimental setups, including modeling, simulation, and experiment:

• programming training

• beating pendulums

• gyroscope

• ball balancer

• robot arm

• inverse pendulum

• balancing robot

programming training

AB

φ0

beating pendulums gyroscope ball balancer

PendelWinkelsensor

Schli!en

Servoumrichter

Bewegung

robot arm inverse pendulum balancing robot
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Slot car racer The LTD’s computer controlled slot car racer has been extended by a powerful industrial
camera and a new data acquisition device. The UI-3060CP USB-3 camera from IDS provides excellent image
quality, a high refresh rate of 166 fps at 2.4 MP, low input delay and extremely low noise. The PCIe-6321 data
acquisition board from National Instruments integrates high-performance analog, digital, and counter/timer
functionality into a single device, making it well-suited to control the slot car via a computer. These new
components will bring significant improvement to the slot car tracking lag and hence to a control system that
allows to correct the vehicle towards the desired state.

The slot car racer with the new industrial camera

4.2 MATLAB laboratory

The MATLAB laboratory (MATLAB Praktikum) course is organized by the Chair of Applied Dynamics (LTD)
in coordination with the Chair of Applied Mechanics (LTM), the Chair for Production Metrology (FMT)
and Chair for Engineering Design (KTmfk). The course aims to develop programming skills in MATLAB by
numerically solving problems in mechanical engineering. Every participating chair sets up a task to simulate
a mathematical model of a physical system which is relevant to the courses and research carried out at the
particular chair. For example, the LTD task is to model a Crane and solve its dynamics, the tasks for the LTM
and KTmfk chairs concern the design of a bridge (static truss) for stiffness and optimization, and the FMT task
discusses the concept of Fourier transformation with respect to the analysis of measurement data.
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4 Activities

4.3 Teaching

Wintersemester 2017/2018

Dynamik starrer Körper (MB, ME, WING, IP, BPT, CE, MT)
Vorlesung S. Leyendecker, T. Wenger

Übung + Tutorium T. Bentaleb, D. Budday
T. Gail, T. Leitz

J. Penner, U. Phutane

Mehrkörperdynamik (MB, ME, WING, TM, BPT, MT)

Vorlesung + Übung T. Wenger
entfallen im WS2017/2018

Praktikum Technische Dynamik – Modellierung, Simulation und
Experiment (MB, ME, WING, IP, BPT)

S. Leyendecker
T. Bentaleb, D. Budday

M. T. Duong, T. Gail
T. Leitz, U. Phutane

T. Schlögl, T. Wenger

Praktikum Matlab (MB)
M. Eisentraudt, T. Schlögl

Sommersemester 2017

Biomechanik (MT)

Vorlesung + Übung H. Lang
geprüft 34 + 6 (WS 2016/2017)

Dynamik nichtlinearer Balken (MB, M, Ph, CE, ME, WING, IP, BPT)

Vorlesung + Übung H. Lang, T. Leitz
geprüft 19 + 1 (WS 2016/2017)

Geometrische numerische Integration (MB, ME, WING, BPT)
Vorlesung S. Leyendecker

Übung T. Wenger
geprüft 4 + 2 (WS 2016/2017)

Statik und Festigkeitslehre (BPT, CE, ME, MWT, MT)
Vorlesung S. Leyendecker

Übung + Tutorium D. Budday, M. Eisentraudt
geprüft 361 + 433 (WS 2016/2017) T. Gail, T. Leitz

J. Penner, U. Phutane
T. Wenger

Theoretische Dynamik (TM, MB, ME, BPT, WING)

Vorlesung + Übung H. Lang, J. Penner
geprüft 34 + 5 (WS 2016/2017)
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Praktikum Rechnerunterstützte Produktentwicklung (RPE)
Versuch 6: Mehrkörpersimulation in Simulink (MB, ME, WING)

Teilnehmer 60 D. Budday, T. Gail
M. T. Duong

T. Leitz, U. Phutane
T. Schlögl, T. Wenger

Additional exams

Numerische Methoden in der Mechanik
geprüft 6

Wintersemester 2016/2017

Biomechanik der Bewegung (MT)

Vorlesung + Übung H. Lang
geprüft 24 + 5 (SS 2017)

Dynamik starrer Körper (MB, ME, WING, IP, BPT, CE)
Vorlesung S. Leyendecker

Übung + Tutorium D. Budday, D. Glaas
geprüft 407 + 126 (SS 2017) T. Leitz, M. Ringkamp

U. Phutane, T. Schlögl

Mehrkörperdynamik (MB, ME, WING, TM, BPT, MT)
Vorlesung S. Leyendecker

Übung T. Wenger
geprüft 73 + 14 (SS 2017)

Numerische Methoden in der Mechanik (MB, ME, WING, TM, BPT, MT)

Vorlesung + Übung H. Lang, J. Penner
geprüft 27 + 6 (SS 2017)

Theoretische Dynamik II (MB, ME, WING, TM, BPT, CE, M, Ph, LaP)

Vorlesung + Übung H. Lang
geprüft 6

Dynamisches Praktikum – Modellierung, Simulation und
Experiment (MB, ME, WING, IP)

Teilnehmer 15 S. Leyendecker
H. Lang, D. Budday
T. Gail, U. Phutane

T. Leitz, M. Ringkamp
T. Schlögl, T. Wenger
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4.4 Theses

Master theses

• Anika Kreipp
MRT-Daten basierte geometrische Modellierung eines Rattenherzes

• David Holz
Computing fibre orientations for a finite element model of a rat heart

• Ludwig Herrnböck
Computational modelling of the cardiac electrophysiology of a rat left ventricle using finite elements

Project theses

• Björn König
Simulation of a dielectric elastomer actuated revolute joint

• Kevin Lösch
Finite element modelling of passive mechanical properties of a rat left ventricle

• Wuyang Zhao
Variationaler Integrator für geregelte mechanische Systeme mit Zwangsbedingungen und impulsartigen
Störungen

4.5 Seminar for mechanics

together with the Chair of Applied Mechanics LTM

27.01.2017 Wuyang Zhao
Project thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Variationaler Integrator für geregelte mechanische Systeme mit Zwangsbedingungen und impuls-
artigen Störungen

10.02.2017 Mahmood Jabareen
Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
A new approach for finite elements formulation using the Cosserat point theory

05.04.2017 Alexander Werner
Institut für Robotik und Mechatronik, Deutsches Zentrum für Luft- und Raumfahrt
Roboter auf zwei Beinen

04.05.2017 Miles B. Rubin
Faculty of Mechanical Engineering, Technion, Haifa, Israel
A new analysis of stresses in arteries based on a Eulerian formulation of growth in tissues

22.05.2017 Martin Grepl
Institut für Geometrie und Praktische Mathematik, RWTH Aachen
Reduced Basis Methods for Nonlinear Parametrized Partial Differential Equations

31.05.2017 Timo Heister
Mathematical Sciences, Clemson University, South Carolina
A parallel solution approach for crack propagation using adaptive mesh refinement
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13.06.2017 Stephan E. Wolf
Junior Professor for Biomitic Materials and Processes, WW3, FAU
Bio-inspired functionally graded materials: process-structure-property relationships arising from
nonclassical crystallization in vivo

12.07.2017 Claire Bruna-Rosso
Ph.D candidate, Politecnico di Milano
Finite Element Modeling of the Selective Laser Melting Additive Manufacturing Process

03.08.2017 Eleni Agiasofitou
Department of Physics, TU Darmstadt
Mathematical modelling of quasicrystals: generalized dynamics

16.08.2017 Anika Kreipp
Master thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
MRT-Daten basierte geometrische Modellierung eines Rattenherzes

24.10.2017 Sonia Mogilevskaya
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota
The Gurtin-Murdoch and Steigmann-Ogden models vis-á-vis the Benveniste-Miloh interface
regimes

02.11.2017 David Holz
Master thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Computing fibre orientations for a finite element model of a rat heart

02.11.2017 Ludwig Herrnböck
Master thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Computational modelling of the cardiac electrophysiology of a rat left ventricle using finite ele-
ments

02.11.2017 Kevin Lösch
Project thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Finite element modelling of passive mechanical properties of a rat left ventricle

17.11.2017 Björn König
Project thesis, Chair of Applied Dynamics, University of Erlangen-Nuremberg
Simulation of a dielectric elastomer actuated revolute joint

08.12.2017 Wolgang Weber
Professur für Statik und Dynamik, Helmut-Schmidt-Universität/Universität der
Bundeswehr Hamburg
Ein Ansatz zur Beschreibung des dynamischen Bewehrungsauszuges in Laminaten unter Ver-
wendung einer Modellreduktion

4.6 Editorial activities

Advisory and editorial board memberships Since January 2014, Sigrid Leyendecker is a member of the advisory
board of the scientific journal Multibody System Dynamics, Springer. She is a member of the Editorial Board
of ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und
Mechanik since January 2016.
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5 Publications

5 Publications

5.1 Reviewed journal publications

1. T. Schlögl, and S. Leyendecker. A polarisation based approach to model the strain dependent permittivity
of dielectric elastomers. Sensors and Actuators, A: Physical, Vol. 267, pp. 156-163, 2017. DOI:
10.1016/j.sna.2017.09.048.

2. D. Budday, R. Fonseca, S. Leyendecker, and H. van den Bedem. Frustration-guided motion planning
reveals conformational transitions in proteins. Proteins: Structure, Function, and Bioinformatics,
Vol. 85, pp. 1795-1807, 2017. DOI: 10.1002/prot.25333.

3. A. Héliou, D. Budday, R. Fonseca, and H. van den Bedem. Fast, clash-free RNA conformational morphing
using molecular junctions Bioinformatics, Vol. 33(14), pp. 2114-2122, 2017. DOI: 10.1093/bioinformat-
ics/btx127.

4. T. Wenger, S. Ober-Blöbaum, and S. Leyendecker. Construction and analysis of higher order variational
integrators for dynamical systems with holonomic constraints. Advances in Computational Mathematics,
Vol. 43(5), pp. 1163-1195, 2017. DOI 10.1007/s10444-017-9520-5.

5. M. Ringkamp, S. Ober-Blöbaum, and S. Leyendecker. On the time transformation of mixed integer
optimal control problems using a consistent fixed integer control function. Mathematical Programming,
Vol. 161, pp. 1-31, 2017. DOI 10.1007/s10107-016-1023-5.

5.2 Invited lectures

1. D. Budday, R. Fonseca, A. Héliou, S. Leyendecker, and H. van den Bedem. Revealing Molecular
Mechanisms with Kino-Geometric Sampling (KGS). Invited lecture, Kortemme Lab at UCSF, San
Francisco, California, USA, 14 November 2017.

2. D. Budday, R. Fonseca, A. Héliou, S. Leyendecker, and H. van den Bedem. Revealing molecular
mechanisms through geometric rigidity analysis and motion planning. Invited lecture, Gohlke group at
Heinrich-Heine University, Düsseldorf, Germany, 31 July 2017.

3. S. Leyendecker. Optimal control of human motion biological and artificial muscles Workshop Computer-
modellierung von Wirbelsäule und Muskulatur, Koblenz, Germany, 28 March 2017.
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5.3 Conferences and proceedings

1. D. Budday, R. Fonseca, S. Leyendecker, and H. van den Bedem. Bridging protein rigidity theory and nor-
mal modes using kino-geometric analysis Poster, BaMBA 11, UCSF, California, USA, 18 November 2017.

2. M.T. Duong, T. Wenger, L. Herrnböck, T. Ach, D. Holz, A. Kreipp, S.V. Binnewitt, H. Stegmann,
S. Dittrich, M. Alkassar, and S. Leyendecker. Modelling cardiac mechanics and electrophysiology of a rat
left ventricle: A case study. International Conference on Biomedical Technology, Hannover, Germany,
06-08 November, 2017.

3. J. Penner, T. Schlögl, and S. Leyendecker. Optimal control of a slot car racer Proceedings of the 7th
GACM Colloquium on Computational Mechanics, Stuttgart, Germany, 11-13 October 2017.

4. T. Wenger, S. Ober-Blöbaum, and S. Leyendecker. Higher order variational integrators for multirate and
holonomically constrained systems. International Conference on Scientific Computation and Differential
Equations (SciCADE), Bath, UK, 11-15 September 2017.

5. D. Budday, R. Fonseca, S. Leyendecker, and H. van den Bedem. Hierarchical, Structural Basis for
Motions Encoding HDXMS Data Poster, Conformational Ensembles from Experimental Data and
Computer Simulations, Berlin, Germany, 25-29 August 2017.

6. T. Wenger, S. Ober-Blöbaum, and S. Leyendecker. Mixed order variational integrators for multiscale
problems. Foundations of Computational Mathematics (FoCM), Barcelona, Spain, 10-12 July 2017.

7. T. Leitz, and S. Leyendecker. On unit-quaternion based Galerkin Lie group variational integrators.
Foundations of Computational Mathematics (FoCM), Barcelona, Spain, 10-12 July 2017.

8. S. Björkenstam, J. Nyström, S.J. Carlson, M. Roller, J. Linn, L. Hanson, D. Högberg, and S. Leyendecker.
A framework for motion planning of digital humans using discrete mechanics and optimal control. 5th
International Digital Human Modeling Symposium/(eds.) Sascha Wischniewski & Thomas Alexander,
Bonn, Germany, 26-28 June, 2017.

9. U. Phutane, M. Roller, S. Björkenstam, J. Linn, and S. Leyendecker. Kinematic validation of a human
thumb model. ECCOMAS Thematic Conference on Multibody Dynamics, 10 Pages, Prague, Czech
Republic, 19-22 June 2017.

10. M. Roller, S. Björkenstam, J. Linn, and S. Leyendecker. Optimal control of a biomechanical multibody
model for the dynamic simulation of working tasks. ECCOMAS Thematic Conference on Multibody
Dynamics, 10 Pages, Prague, Czech Republic, 19-22 June 2017.

11. T. Gail, S. Ober-Blöbaum, and S. Leyendecker. Variational multirate integration in discrete mechanics
and optimal control ECCOMAS Thematic Conference on Multibody Dynamics, 10 Pages, Prague, Czech
Republic, 19-22 June 2017.

12. H. Lang, and S. Leyendecker. A generalised fourier method to solve the initial boundary value problem
for free vibrating viscoelastic beam models. ECCOMAS Thematic Conference on Multibody Dynamics,
10 Pages, Prague, Czech Republic, 19-22 June 2017.

13. T. Leitz, and S. Leyendecker. Towards Higher Order Multi-Symplectic Lie-Group Variational Integrators
for Geometrically Exact Beam Dynamics - Avoidance of Shear Locking. ECCOMAS Thematic Conference
on Multibody Dynamics, Prague, Czech Republic, 19-22 June 2017.
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14. D. Glaas, and S. Leyendecker. Variational integrator for constrained mechanical systems with pulsed
disturbances and optimal feedback control. GAMM Annual Meeting, Weimar, Germany, 6-10 March
2017.

15. U. Phutane, M. Roller, S. Björkenstam, and S. Leyendecker. Investigating human thumb models via their
range of motion volumes. GAMM Annual Meeting, Weimar, Germany, 6-10 March 2017.

16. T. Wenger, S. Ober-Blöbaum, and S. Leyendecker. Variational integrators of mixed order for constrained
and unconstrained systems acting on multiple time scales. GAMM Annual Meeting, Weimar, Germany,
6-10 March 2017.

17. T. Schlögl, and S. Leyendecker. A polarisation based approach to model strain dependent electrostatic
pressure of dielectric elastomer actuators. GAMM Annual Meeting, Weimar, Germany, 6-10 March 2017.

18. J. Penner, T. Schlögl, and S. Leyendecker. Optimal control of a slot car racer. GAMM Annual Meeting,
Weimar, Germany, 6-10 March 2017.
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6 Social events

Visit of the Bergkirchweih 06.06.2017
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6 Social events

Student summer party 27.07.2017

Visit of Felsengänge and Bowling Nuremberg 01.09.2017
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6 Social events

Christmas party together with LTM 19.12.2016
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Nikolaus hike 08.12.2016
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