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1 Preface

1 Preface

This report gives a summary of the scientific and teaching activities of the Institute of Applied Dy-
namics (LTD) at the Friedrich-Alexander-Universität Erlangen-Nürnberg during the year 2020. The
members of LTD are passionately working on topics such as multibody dynamics and robotics, motion
capturing, biomechanics, structure preserving methods and optimal control.
Many thanks to our technical, scientific and admin staff at LTD and also to all the students involved
to make it a successful year at the Institute of Applied Dynamics. We wish you an enjoyable time
glancing through our annual report.
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2 Team

2 Team

institute holder
Prof. Dr.-Ing. habil. Sigrid Leyendecker

technical staff
Beate Hegen
M.Sc. Elisa Fleischmann
M.Sc. Markus Lohmayer

academic scientist
Dr. rer. nat. Holger Lang

postdoc
Dr. Rodrigo Sato Mart́ın de Almagro

scientific staff
M.Sc.hons. Xiyu Chen
M.Sc. David Holz
M.Sc. Dengpeng Huang
M.Sc. Michael Klebl
M.Sc. Denisa Martonová
M.Sc. Johann Penner
M.Sc. Dhananjay Phansalkar
M.Sc. Uday Phutane
M.Sc. Eduard Sebastian Scheiterer
M.Sc. Martina Stavole from 01.05.2020
M.Sc. Theresa Wenger

students
Johannes Bayer Niko Beck Anja Boebel
Dorothea Brackenhammer Johanna Brosel Patrick Deferner
Marc Gadiner Carla Gerlach Christian Gmeiner
Alexander Greiner Maximilian Hausch Simon Heinrich
Daphne Hohbohm Xuyue Huang Anne Kirsch
Ogulhan Kizilkaya Lea Köstler Deepakraj Krishna Kundar
Xihao Liu Tanya Neeraj Carmen Neubauer
Nivashini Radhakrishnan Julian Reiner Matthias Schubert
Kristin Schuh Nicolas Valbuena Quirin von Rekovski
Felix Werner Pauline Wittermann Fabian Wonn
Annalena Wrobel Juliane Wunder

Student assistants are mainly active as tutors for young students in basic and advanced lectures at the
Bachelor and Master level. Their contribution to high quality teaching is indispensable, thus financial
support from various funding sources is gratefully acknowledged.
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3 Research

3 Research

3.1 ETN – THREAD

The Institute of Applied Dynanics plays an important role in the ETN (European Training Network)
project “Joint Training on Numerical Modelling of Highly Flexible Structures for Industrial Applica-
tions – THREAD” funded by the European Commission's Marie Sk lodowska Curie Programme which
is part of Horizon 2020. The project is coordinated by Prof. Dr. Martin Arnold from the Institute of
Mathematics at the Martin Luther University Halle-Wittenberg (MLU), Prof. Dr.-Ing. habil. Sigrid
Leyendecker is principal investigator and work package leader (geometric numerical methods for rod
system dynamics) and M.Sc. Martina Stavole joined the programme as ESR early this year.
THREAD addresses the mechanical modelling, mathematical formulations and numerical methods
for highly flexible slender structures like yarns, cables, hoses or ropes that are essential parts of
high-performance engineering systems. The complex response of such structures in real operational
conditions is far beyond the capabilities of current virtual prototyping tools.
The project had a successful first annual meeting on 19-22 October 2020 in Kaiserslautern, Germany
with online access via video conference.

3.2 FRASCAL – Fracture across Scales

The DFG research training group FRASCAL – Fracture across Scales (GRK 2423) led by Prof. Dr.-
Ing. habil. Paul Steinmann from the Institute of Applied Mechanics at FAU Erlangen-Nürnberg has
successfully continued its research goals. The Institute of Applied Dynamics takes part within FRAS-
CAL P9 project – Adaptive Dynamic Fracture Simulation. The project is supervised by Prof. Dr.-
Ing. habil. Sigrid Leyendecker and carried out by M.Sc. Dhananjay Phansalkar. It aims to develop
robust and efficient numerical techniques to investigate kinetics of fracture mechanics. It will require
adaptive strategies to obtain suitable combinations of spatial and temporal mesh. These methods are
developed in close cooperation with RTG’s Mercator fellow Prof. Dr. Michael Ortiz. The Visitor’s
workshop took place on March 12th, 2020 in Atzelsberg near Erlangen. It allowed for discussion
with experts from various fields. And midway through the project on September 14 and 15, 2020 the
members of FRASCAL met at Fraunhofer Research Campus, Waischenfeld for an RTG retreat.

3.3 SPP 1886

The German Research Foundation (DFG) Priority Programme “Polymorphic uncertainty modelling
for the numerical design of structures – SPP 1886” is coordinated by Professor Dr.-Ing. Michael
Kaliske from Technische Universität Dresden and Prof. Dr.-Ing. habil. Sigrid Leyendecker is part of
the programme committee and principal investigator of one of the projects. In 2020, the Institute
of Applied Dynamics had sucessfully took part in the Phase2-Kickoff Meeting in June, as well as in
the second Annual Meeting in November, where the progress in the research of dynamic analysis of
prosthetic structures with polymorphic uncertainty was presented.

3.4 DFG dielectric elastomer project

The new DFG-Einzelförderung / Sachbeihilfe “Electromechanically coupled beam models for stacked
dielectric elastomer actuators” project, initiated this year with Prof. Dr.-Ing. habil. Sigrid Leyendecker
as project leader and fellow M.Sc. Dengpeng Huang in the research front. Stacked dielectric elastomer
actuators bear analogy to the behaviour of human muscles in terms of contracting in length direction
when stimulated. They are suitable for point-by-point application of a force. Therefore, dielectric
elastomers allow for a sophisticated, efficient and noiseless actuation of systems. However, the use of
elastic actuators is also accompanied by new control challenges. As the computational cost for solving
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optimal control problems is significantly affected by the number of model degrees of freedom, reduced
and problem specific actuator models are superior to general but cost-intensive finite element models.

3.5 Heart project

The heart project is focusing on the modelling of the cardiac function to better understand cardiovascu-
lar disease, to be able to early detect or even predict heart failure and develop adequate patient specific
therapies and medical devices. We are currently working on a rat as well as a human heart model.
The former is related to the rat heart project, which is an established research cooperation between
the Institute of Applied Dynamics and the Pediatric Cardiology at Friedrich-Alexander-Universität
Erlangen-Nürnberg and is funded by the Klaus Tschira Stiftung. The goal of the project is to explore
the heart function under pathological and normal conditions by developing a computational model
of a rat heart which will be validated with experiments at the Pediatric Cardiology. In 2020, we
were mainly focusing on the first steps towards the development of a heart support system as well as
determination of a desired transmural fibre and sheet distributions in the myocardium.

3.6 Characterisation of Macromolecules

The characterisation of macromolecules project is a cooperation research between the Institute of
Applied Dynamics at Friedrich-Alexander-Universität Erlangen-Nürnberg and SLAC National Accel-
erator Laboratory at Stanford University and is funded by German Research Foundation (DFG).
The purpose of this project is characterizing macromolecules e.g. kinases by using the kino-geometric
sampling (KGS) method. The rigidity and conformation transition analysis of macromolecules, will
benefit drug development in the cancer field. The project is cooperated by Dr. Henry van den Bedem
from Stanford University. M.Sc. Xiyu Chen is focusing on the rigidity analysis and the change of
entropy binding with ligands by using the KGS method.

3.7 BMBF 05M2016 – DYMARA

The DYMARA project was funded by the Federal Ministry of Education and Research (BMBF) under
the funding priority “Healthy Life” and it sucessfully ended this year. The joint project was coordi-
nated by Prof. Dr. rer. nat. habil. Bernd Simeon from Technische Universität Kaiserslautern (UNIKL)
and had a thematic relation to ergonomics and health promotion at work. As part of the collaborative
project, Johann Penner at LTD investigated muscle paths in the biomechanical simulation of human
motion and the integration of new fiber-based muscle models to multibody dynamics while the UNIKL
was developing a continuum mechanical muscle model.

3.8 Scientific reports

The subsequent pages present a brief overview on the current research projects pursued at the Institute
of Applied Dynamics. These are partly financed by third-party funding German Research Founda-
tion (DFG), the Klaus Tschira Stiftung, the Federal Ministry of Education and Research (BMBF)
the European Training Network (ETN) and in addition by the core support of the university.

Research topics

Vibrational entropy change for binding with ligands based on the kinematic method
Xiyu Chen, Sigrid Leyendecker, Henry van den Bedem

Modelling the characteristic orthotropic tissue structure in the myocardium
David Holz, Minh Tuan Duong, Denisa Martonová, Muhannad Alkassar, Sven Dittrich, Sigrid
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Leyendecker

Electromechanically coupled beam models for stacked dielectric elastomer actuators
Dengpeng Huang, Sigrid Leyendecker

Investigation of optical motion capturing for characterizing movement patterns of the hand in
rheumatoid arthritis
Michael Klebl, Uday Phutane, Anna-Maria Liphardt, Johann Penner and Sigrid Leyendecker

Discrete mechanics for static Cosserat rods with forcing
Holger Lang, Sigrid Leyendecker, Joachim Linn

First steps towards a cardiac assist device to support a diseased rat heart
Denisa Martonová, Dorothea Brackenhammer, David Holz, Maximilian Landgraf, Muhannad Alkassar
and Sigrid Leyendecker

Musculoskeletal optimal control simulations with a discrete muscle wrapping formulation and improved
contact modelling
Johann Penner, Sigrid Leyendecker

Spatially varying regularisation variable in quasi-static phase-field model for brittle fractures
Dhananjay Phansalkar, Michael Ortiz, Kerstin Weinberg, Sigrid Leyendecker

Grasping via kinematically reduced model of the hand
Uday Phutane, Michael Roller, Sigrid Leyendecker

Understanding variational integrators in field theories
Rodrigo T. Sato Mart́ın de Almagro, Sigrid Leyendecker

Forward dynamics simulation of a human leg with a carbon spring prosthetic foot
Eduard S. Scheiterer, Sigrid Leyendecker

Variational integrators used to solve a 1D wave equation
Martina Stavole, Sigrid Leyendecker

Analysis of multirate variational integrators and mixed order variational integrators by Modulated
Fourier expansions
Theresa Wenger, Sina Ober-Blöbaum and Sigrid Leyendecker
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Vibrational entropy change for binding with ligands based on the kinematic method

Xiyu Chen, Sigrid Leyendecker, Henry van den Bedem1 2

Protein is a series of amino acid in the sequence, the function of protein and binding with other bio-
molecules is determined by the folded of protein and 3D structure. Study of the energy and entropy
change when binding with ligands benefits to understand the affinity of binding and discover the
potential drugs.
In this study, we developed a kinematic method to calculate the vibrational entropy. We start from
the Kinematic rigidity analysis (KRA)[1, 2], KRA method is an efficient method and fast method to
present the rigidified cluster and rigidified dihedral angles of functional molecule. KRA represents
molecules as articulated multi-body complexes with dihedral angles as revolute degree of freedom and
selected non-covalent interactions such as hydrogen bonds and hydrophobic interaction as holonomic
constraints. The sigular value decomposition (SVD) of the constraint Jacobian matrix provide the
information for the rigidified dihedral angles. Base on the rigidified dihedral angles, the position
Jacobian matrix is derived as

Jij =
∂xi
∂θj

= cijej × (xi − xj−1) ∈ R3×1 for i = 1, ..., N and j = 1, ..., n (1)

Then we build the Hessian matrix of potential energy Hθ and Eθ
k kinetic energy for movable dihedral

angles in torsional angle system. They are derived from the Hessian matrix of potential energy Hx in
Cartesian system and M mass matrix.

Hθ = JTHxJ and Eθ
k = JTMJ (2)

In the vibrational entropy analysis, the eigenvalue problem gives the information for the vibrational
mode. The vibrational frequency v and vibrational amplitude ω is calculated through solving the
generalized eigenvalue equation [3].

Hθv = ω2Eθ
kv (3)

Then the vibrational entropy of bio-molecule Svib is calculated based on the vibrational frequency v
and it is derived as

Svib = T−1
n∑
i=1

[
hνi

ehνi/kBT − 1
− kBT ln(1− e−hνi/kBT )] (4)

where T is the temperature, h is the Planck constant and kB is the Boltzmann constant.
For the protein binding with and without ligand binding, the rigidified dihedral angles are different
and cause various atom position Jacobian matrix. So the protein binding with and without ligands
has different vibrational frequencies and entropy. The change of vibrational entropy is derived as

∆Svib = Svib,pl − Svib,p (5)

1Atomwise, Inc. 717 Market Street, San Francisco, CA 94103 USA
2Department of Bioengineering and Therapeutic Sciences, UCSF, California, USA
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We compute the vibrational entropy for 34 pdbfiles and compare the results with the experimental data
from the NMR [4] to validate the results. As shown in the Fig. 1, our method can accurately predict
the vibrational entropy change for the protein-ligand binding. The Pearson correlation factor rP is
used to show the correlation between the experimental data and numerical results. The correlation
factor of our numerical results is 0.80, thus our numerical results do well fit the experimental data.

Figure 1: Comparison of experimental data from [4] and numerical results (distance cutoff from 20Å)
for change of vibrational entropy binding with and without ligands. The Pearson correlation
factor is used to present the relation between numerical and experimetnal data. The Pearson
correlation factor is rP = 0.80

References

[1] Budday, Dominik and Leyendecker, Sigrid and van den Bedem, Henry. Geometric analysis charac-
terizes molecular rigidity in generic and non-generic protein configurations. Journal of the Mechanics
and Physics of Solids, Vol. 83, p. 36-47, 2015.

[2] Budday, Dominik and Leyendecker, Sigrid and van den Bedem, Henry. Kinematic Flexibility Anal-
ysis: Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion. Journal of Chemical
Information and Modeling, Vol. 58, p. 2108-2122, 2018.

[3] Mendez, Raul and Bastolla, Ugo. Torsional Network Model: Normal Modes in Torsion Angle Space
Better Correlate with Conformation Changes in Proteins. Physical Review Letters, Vol. 104, 2010.

[4] Gohlke, Holger and Ben-Shalom, Ido Y. and Kopitz, Hannes and Pfeiffer-Marek, Stefania and
Baringhaus, Karl-Heinz. Rigidity Theory-Based Approximation of Vibrational Entropy Changes
upon Binding to Biomolecules. Journal of Chemical Theory and Computation, Vol. 13, p. 1495-
1502, 2017.
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Modelling the characteristic orthotropic tissue structure in the myocardium

David Holz, Minh Tuan Duong, Denisa Martonová, Muhannad Alkassar1, Sigrid Leyendecker

Various approaches for assigning the orthotropic tissue structure to a finite element model have been
proposed. While some approaches directly base on postprocessed imaging data e.g. using DT-MRI
or histology, most of the nowadays used cardiac models utilise a rule-based method in order to give
the finite element domain the characteristic orthotropic property of the myocardium. However, often
rule-based approaches rely on the correct assessment of the transmural depth from the endocardium
to the epicardium. Many of the existing strategies are not able to give an appropriate assessment of
the transmural depth. We propose a method based on a discontintuous Galerkin approach in order
to assess the ventricular myocardial thickness (transmural depth e) [1, 3, 2]. In Figure 1, we show
the visualisation of the fibre orientation from a cutout of the left ventricle with a fibre angle varying
linearly from -60 (blue •) to +60 (red •) degree. In Figure 2, the local fibre orientation in a hollow
cylinder is shown, which varies from -60 (blue •) to +60 (red •) degree.

Figure 1: cutout – LV Figure 2: fibre orientation – hollow cylinder

In Figure 1, the fibre orientation of a cutout from the left ventricle is shown. The fibre angle is varying
linearly from -60 (blue •) to +60 (red •) degree. In Figure 2, a streamline visualisation of a hollow
cylinder is shown, which varies linearly from -60 (blue •) to +60 (red •).

Acknowledgment This work is funded by the Klaus Tschira Stiftung grant 00.289.2016

References

[1] S. E. Jones, B. R. Buchbinder, I. Aharon. Three–dimensional mapping of cortical thickness using
Laplace's equation. Human brain mapping 11:1, 12–32 (2000).

[2] J. D. Bayer, R. C. Blake, G. Plank, N. A. Trayanova. A novel rule–based algorithm for assigning
myocardial fiber orientation to computational heart models Annals of biomedical engineeringg
40:10, 2243–2254 (2012).

[3] F. Brezzi, L. D. Marini, E. Süli. Discontinuous Galerkin methods for first-order hyperbolic problems
Mathematical models and methods in applied sciences 14:12, 1893–1903 (2004).

1Pediatric Cardiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Ger-
many

Institute of Applied Dynamics, Annual Report 2020 12



3 Research

Electromechanically coupled beam models for stacked dielectric elastomer actuators

Dengpeng Huang, Sigrid Leyendecker

In this project, we are interested in developing the actuators for soft robotics. It has many advan-
tages over traditional robots such as the flexible bionic structure, powerful task-capability and safe
interaction with environment. To this end, the Dielectric Elastomer Actuators (DEAs) have been de-
veloped to perform as the artificial muscles for the soft robotics, see e.g. [1]. The DEA possesses the
sandwiched structure, where the dielectric elastomer is sandwiched between two compliant electrodes,
as shown in Fig.1. When the external electrical field is applied, the contraction of the DEA will be
induced by the polarizing of the dielectric elastomer. When the larger deformation is required, the
stacked DEA with multiple capacitors can be applied.

Figure 1: Working principle of DEA.

The deformation behavior of the DEA is governed by the electromechanical coupling in the balance
law of momentum and the Maxwell equations, see e.g. [2, 3]. The governing equations in continuum
mechanics and the geometrically exact beam can formulated as seen below.

Maxwell equation

∇X ×Ee = 0, ∇X ·D = 0 in B

D · n = q̂ on ∂Bq

φ = φ̂ on ∂Bφ

Maxwell equation in beam

∂sd
e
s + de,ext = 0 in B

de · n = q̂ on ∂Bq

φ = φ̂ on ∂Bφ

Balance of momentum

∇X ·P + ρ0b̄ = ρ0ü in B

FPT = PFT in B

PN = t̂ on ∂Bσ

u = û on ∂Bu

Balance of momentum in beam

∂sf + f ext = ρAü in B

f ext = t̂ on ∂Bσ

u = û on ∂Bu

∂sm + ∂su× f + mext = Iω̇ + ω × Iω

Ωb(γ,κ, ε) =

∫
Σ

Ω(C,Ee)dA

with Ee the electrical field, D the electric displacement in the initial configuration, φ the current
electric potential, P the first Piola-Kirchhoff stress tensor, ρ0 the mass density in initial configuration,
b̄ the body force vector, ü the acceleration, F the deformation gradient, Ω the strain energy,

de =
[
de1 de2 des

]T
the electric displacement vector for beam, f the internal force, f ext the external

force, ω the spatial angular velocity, I the spatial mass moment of inertia tensor, m the torque per
unit of arch-length, Ωb the strain energy per unit arc-length in beam, ε the strain-like electric variable
conjugated with the electric displacement de of beam, γ and κ the beam strain measures.
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By applying proper electric potential as boundary conditions on the beam cross sections, different
modes of deformation in the beam are generated, such as contraction, shear, bending and torsion as
shown in Fig.2. The beam model is validated by comparing the results with the 3D finite element
model.

1

b

b

l

φi = φso +X1αs +X2βs

1

2

3

i

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2: Simulation of DEA with (a) initial geometry, (b) contraction, (c) shear, (d) bending, (e)
torsion by beam model, and (f)-(j) by 3D FEM model.

References

[1] M. Duduta, E. Hajiesmaili, H. Zhao, R. J. Wood, and D. R. Clarke. Realizing the potential of
dielectric elastomer artifcial muscles. Proceedings of the National Academy of Sciences, 116(7):2476-
2481, 2019.

[2] D. Vu, P. Steinmann, and G. Possart. Numerical modelling of non-linear electroelasticity. Interna-
tional Journal for Numerical Methods in Engineering, 70(6):685-704, 2007.

[3] T. Schloegl and S. Leyendecker. Electrostatic viscoelastic finite element model of dielectric actua-
tors. Computer Methods in Applied Mechanics and Engineering, 299:421-439, 2016.
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Investigation of optical motion capturing for characterizing movement patterns of the
hand in rheumatoid arthritis

Michael Klebl, Uday Phutane, Anna-Maria Liphardt, Johann Penner and Sigrid Leyendecker

Introduction The diagnosis of Rheumatoid arthritis (RA), a chronic inflammatory auto-immune
disease, and assessment is mainly done using patient reported outcome measures, such as question-
naires and simple validated functional tests like isometric grip strength or the Moberg-Picking-Up
Test (MPUT, [2]) which can be used to quantify muscle performance and fine motor skills but do
not allow identifying and quantifying differences in movement patterns. These functional measures,
even though they are objective, often are greatly affected by age and sex in RA patients. A detailed
quantification of hand function capturing simple tasks but also complex movements that can reflect
subjectively observed hand function impairment in patients with RA would be desirable, which was
done by an optoelectronic measurement systems (OMS) [3].

methods Individuals diagnosed with RA and healthy controls were included in the study, see [3].
The assessment of clinical hand function included several tests. First of all, isometric grip strength
was measured in pounds (lbs) using a hand dynamometer (Lafayette Instrument, Lafayette, IN, USA).
Three measurements of grip strength were performed, starting with the dominant hand and alternating
between hands. The highest measured force for each hand was included in the data analysis. Secondly,
fine motor skills were assessed using the Moberg-Picking-Up test [2]. Briefly, subjects are asked to
pick up twelve small items and drop them into a box as fast as possible while the time to complete the
task is recorded.With each hand two repetitions of the test were completed starting with the dominant
hand. The fastest trial was included in the analysis. Hand segment kinematics were recorded with
synchronized and calibrated high-resolution and high-speed infrared cameras (eight Oqus7+ cameras
and one Oqus5+ camera, Qualisys AB, Sweden) by tracking 29 retroreflective spherical markers with
diameters of 8 mm and 14 mm at a frame-rate of 100 Hz,as seen with different hand postures in
Figure 1. The markers were placed on the hand dorsum using double-sided hypoallergenic adhesive
tape, based on anatomical landmarks according to the layout described in [1].

results Forty-seven individuals participated in this study [3]. This provided us with measurement
data for NA = 64 total hands with NC = 35 healthy controls and NR = 29 RA patients hands. MPUT
and grip strength results for clinical and OMS setup are summarized in Table 1. The mean MPUT
time in the clinical setting was significantly slower in RA patients (17.5 ± 4.7 s) compared to control
subjects (14.1 ± 4.1 s). Mean MPUT times with markers during OMS data collection was 20.3 ± 7.1
s for RA patients and 16.0 ± 4.5 s for the control group. This increase in MPUT times is similar for
control and RA participants and also for men and women. The mean, standard deviation, maximum
and minimum values values for MPUT and grip strength test are provided in Table 1.

Table 1: The table provides the mean (sd, or standard deviation), minimum, and maximum values for
subjects’ grip strength and times for MPUT in the clinical setting and with the OMS setup.

ALL (NA = 64) CON (NC = 35) RA (NR = 29)
min mean (sd) max min mean (sd) max min mean (sd) max

grip strength
in lbs

clinical 32 82.3 (34.6) 178 44 91.7 (35.7) 178 32 71.8 (29.8) 134

OMS 19 64.0 (28.6) 140 19 71.5 (29.6) 140 20 55.4 (24.7) 102

MPUT
times in s

clinical 9.2 15.6 (4.7) 31.4 9.2 14.1 (4.1) 31.4 12.2 17.5 (4.7) 30.1

OMS 11.1 18.0 ( 6.2 ) 41.0 11.1 16.0 ( 4.5) 31.9 12.2 20.3 ( 7.1) 41.0
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(a) Moberg-Picking-Up test setup

(b) Finger tipping

(c) Fist posture

Figure 1: The hand postures for the different recordings, with the respective marker set-up. The
participants are instructed to lift and place 12 objects in the nearby container. In (b), finger
tipping motion is shown between the thumb and the index finger. In (c), the fist posture
showing the full flexion capacity of the hand is demonstrated.

conclusion The investigation emphasizes the need for adapting newer technologies to assist in the
characterization of hand movement in patients suffering from RA. To achieve this, the integration of
existing clinical methodologies together with state of the art technologies and experimental method-
ology is essential. Optical tracking using OMS has been shown capable of capturing a variety of hand
movements observed in activities of daily living. Furthermore, hand movement maybe artificially
changed because of restrictions due to markers mounted on the skin and the artificial test environ-
ment. To acquire hand function in a more natural environment, markerless capturing of movement is
desirable.
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Discrete mechanics for static Cosserat rods with forcing

Holger Lang, Sigrid Leyendecker, Joachim Linn

The kinematics of a continuous Cosserat rod [2] is completely determined by its centerline x : [0, L]→
R3 and a centerline fixed frame R = [d1,d2,d3] : [0, L]→ SO(3), which is specifying the cross section
orientation. See Figure 2. With the strain Γ = R>∂sx − e3 and the curvature K = R>∂sR,
the elasticity matrices CΓ = diag(GA,GA,EA) and CK = diag(EI1, EI2, GJ), and the coordinates
q = (x,R), the internal elastic energy can be expressed as

V =

∫ L

0
W(q, q′)ds, W(q, q′) =

1

2
Γ>CΓΓ +

1

2
K>CKK.

In analogy of Lagrangian dynamic systems, V can be interpreted as the action, W as the Lagrangian
function of the system. Forces and moments are related via f = RCΓΓ resp.m = RCKK to the
strain resp. curvature.

Figure 2: Kinematics of a Cosserat rod

The stationarity of the action functional leads to the continuous static equilibrium equations 0 = T (q)>
{

d

ds
∇q′W (q, q′)−∇qW (q, q′)

}
0 = g(q)

,

where T (q) is a null space matrix to the constraint function g(R) = R>R−E, see e.g. [2].
Noether’s Theorem [1] yields the following conserved magnitudes: The total force f(s) (since W is
translatory invariant), the total momentum m(s) + x(s) × f(s) (since W is rotatory invariant) and
the twist moment 〈m(s),d3(s)〉 (in case that W is isotropic, i.e., if EI1 = EI2). Here, s ∈ [0, 1].

Similarly as in [2], a consistent discrete Cosserat rod can be defined by the discrete centroids xn ∈ R3

and discrete cross section orientations Rn ∈ SO(3), both situated on a discrete node (or vertex) grid
0 = s0 < s1 < . . . sN = L. With the discrete strains Γν = 1

2∆sν
(Rν− 1

2
+Rν+ 1

2
)>(xν+ 1

2
− xν− 1

2
)− e3

and the discrete curvatures K̂ν = 1
∆sν

inv cay(R>
ν− 1

2

Rν+ 1
2
), where ∆sν = sν+1/2 − sν−1/2 and

ν = 1
2 , . . . , N −

1
2 , the discrete internal elastic energy can be written as

V =

N−1/2∑
ν=1/2

Wν∆sν , Wν =
1

2
Γ>ν CΓΓν +

1

2
K>ν CKKν .

The stationarity of this discrete action leads to the discrete static equilibrium equations{
0 = T (qn)>

{
∇lW (qn, qn+1) + ∇rW (qn−1, qn)

}
0 = g(qn)

,
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where ∇l resp.∇r denote the gradient w.r.t. the left resp. right argument. Internal forces and momenta
are obtained via the discrete Legendre transformation[

fn
mn

]
= −

[
E

T (qn)>

]
∇lW (qn, qn+1) =

[
E

T (qn)>

]
∇rW (qn−1, qn).

The discrete Noether Theorem [1] now yields the following conserved magnitudes: The total force fn
(since W is translatory invariant), the total momentum mn +xn× fn (since W is rotatory invariant)
and the twist moment 〈mn,d

3
n〉 (in case that W is isotropic). Here n = 0, 1, 2, . . . , N . According to

the discrete Lagrange-d’Alembert principle, exterior forces mathcalFL and moments ML at s = L
can be added to the right-hand side of the equilibrium equations, yielding

0 = T>(qn)
{
∇lW (qn, qn+1) + ∇rW (qn−1, qn)

}
0 = T>(qN )

{
∇rW (qN−1, qN )

}
+

[
FL

ML

]
0 = g(qn)

for n = 1, . . . , N . See Figure 1 for the conserved quantities for a scenario, where the boundary con-
ditions x0 = 0, R0 = E, FL = [1.0, 2.0, 3.0]>, ML = [4.0, 5.0, 6.0]> are imposed and the parameters
L = 1, EI1 = EI2 = GJ = 1, GA = EA = 200 are used. N = 40 elements are chosen.

Figure 3: Above: Perfect conservation of the total force, the total moment and the twist moment. The
defects are of maximum order 10−12.

Whereas the left-boundary forces f0 do not depend on the solution (f0 = f1 = . . . = fN = FL),
the left-boundary moments m0 depend on the (non trivial) deformed configuration and therefore on
the grid size ∆sν . (In discrete Lagrangian dynamics, we typically have an initial value problem,
from which the values of the conserved quantities are determined from the initial values. They are
independent of the time grid resolution.) In beam statics, the conserved quantities are configuration
dependent, their values depending on the spatial grid. However, convergence to the continuum limit
is obtained for grid refinement.
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First steps towards a cardiac assist device to support a diseased rat heart

D. Martonová, D. Brackenhammer, D. Holz, M. Landgraf1, M. Alkassar1, S. Leyendecker

If a heart is seriously diseased, there are usually only two options – the use of a cardiac assist device
(CaAD) or heart transplantation. In the last decades, many CaADs have been developed, including
those with and without a direct blood contact. So far, the latter can only support a heart during
the active contraction (systole) by generating a positive support pressure on the epicardium [3]. In
this work, we consider first steps towards the modelling and simulation of a CaAD without the blood
contact supporting a heart during the systole via a positive support pressure facilitating the ventricular
outflow as well as during the diastole via a negative support pressure which relieves the diastolic filling.

Simple modelling approach

On the epicardium of a generic finite element model of the rat left ventricle (LV), see Figure 1 left,
a sinusoidal support pressure p(t) as displayed in Figure 1 middle is applied. In order to model a
diseased heart, e.g. after myocardial infarction, the ventricular stiffness in the strain energy function
for the passive myocardium [2] is increased and the maximal active force in the model [1] is decreased.
The resulting pressure-volume loops are presented in Figure 1 right. By applying a negative pressure
during the diastole and a positive pressure during the systole, we observe a significant increase in the
ejection fraction, namely from 41% in the diseased case to 58% which lies in the physiological range.

Figure 1: Left: generic LV with support pressure p(t). Middle: temporal evolution of support pressure
p(t). Right: simulated pressure-volume loops for healthy rat LV and diseased rat LV with
and without CaAD generating a support pressure p(t).

Acknowledgments This work is funded by the Klaus Tschira Stiftung grant 00.289.2016.
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Musculoskeletal optimal control simulations with a discrete muscle wrapping
formulation and improved contact modelling

Johann Penner, Sigrid Leyendecker

In this work, we investigate a simulation model for the human musculoskeletal system, which shall be
steered from a certain initial state to a predefined final state in an optimal way. These optimal control
simulations require the prediction of the action of muscles working around joints, in conjunction with
skeletal movements that are represented as a multibody system. In particular, we are interested
in a formulation for the direct contact between muscles and any number of wrapping surfaces that
enables contact opening. Therefore, we employ the direct transcription method DMOCC [2] along
with a discrete muscle path formulation and the Signorini contact problem. This enables us to solve
the transcribed constrained minimisation problem to find control trajectories simultaneously with an
inequality complementarity contact behaviour. The result is an improved musculoskeletal optimal
control simulation model with a contact formulation that requires less foreknowledge of the wrapping
surfaces than in previous work, see [3, 4].

Figure 1: Musculoskeletal arm model with major muscles around the elbow1

All formulations in this work are based on discrete Lagrangian mechanics, including skeletal dynamics
and muscle paths. This requires the discretization of all continuous quantities in Hamilton’s principle.
The resulting discrete Euler-Lagrange equations are time stepping equations that inherit certain
characteristic properties of the continuous solution. Finally, the structure preserving properties of the
integrator enable our simulations to account for large, rapid changes in muscle paths, and skeleton
dynamics [3, 2].

The DMOCC [2] method then deals with the problem of finding discrete optimal control trajectories
subject to the discrete Euler-Lagrange equations of the system, such that a certain discrete objective
function Jd, or respectively the sum of a discrete cost function Cd, with respect ot a discrete optimi-
sation vector xd = {xn}Nn=0 with N ∈ N and N + 1 time nodes is minimised. The optimal control

13d bone geometry from https://www.thingiverse.com/thing:1543880
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problem in this work reads

min
xd

Jd(xd) = min
xd

N−1∑
n=0

Cd(xn,xn+1)

subject to

· discrete Lagrange mechanics
· geodesic muscle paths
· Signorini problem
· boundary and path conditions

where the infinite dimensional optimal control problem is transcribed into a finite dimensional non-
linear programming problem that can be solved by any suitable standard algorithm.
The point of using discrete Lagrangian mechanics is that we intend to use a structure preserving
integration method. In general, arbitrary time discretization methods do not inherit the conserved
quantities in the solution of the equations of motion. However, the discretization of the Hamilton
principle is able to inherit symmetries of the continuous dynamical system and consequently inherits
its structure preserving properties. In addition, the resulting variational integrator shows very good
energy behaviour with a limited energy error in long time simulations, which is very advantageous for
our simulations [3, 2].
To define the shortest path problem over a given obstacle, we first assume that the muscle completely
touches the surfaces, thus the path is constrained by a holonomic surface constraint φ(γk) = 0 ∈ R.
We define the discrete geodesic curve γd = {γk}Kk=0 on a discrete arc length grid with K ∈ N and K+1
nodes. Here, a discrete geodesic curve has to satisfy the geodesic discrete Euler-Lagrange equations

∂Lγ(γk−1,γk)

∂γk
+
∂Lγ(γk,γk+1)

∂γk
−Φd(γk)

T · λk = 0 for k = 1, ...,K − 1

where Φd(γk) is the discrete surface Jacobian and λk ∈ R is a Lagrange multiplier, see [3, 4].
Now, the frictionless contact between muscle path and surface is described via the Signorini prob-
lem. The relation between the relative distance φ(γk) and the Lagrange multiplier λk constitutes an
inequality complementarity behaviour

φ(γk) ≥ 0 λk ≥ 0 φ(γk)
T · λk = 0

which defines the contact between muscle path and adjacent wrapping surface and can handle possible
contact opening and closing. This concludes the non-linear programming problem for our muscu-
loskeletal optimal control simulations.
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Spatially varying regularisation variable in quasi-static phase-field model for brittle
fractures

Dhananjay Phansalkar, Michael Ortiz1, Kerstin Weinberg2, Sigrid Leyendecker

Broadly, there are two computational modeling methodologies in fracture mechanics, namely discrete
and diffusive crack approaches. In many cases, the discrete crack approaches are algorithmically
complex, computationally expensive or both. In contrast, the diffusive crack approach, is quite simple
to implement in the existing finite element libraries. Over the last decade, this method has been
extensively developed for various material models and complex applications. However, there are a few
issues associated with this method. It is known to suffer from convergence issues with the Newton
method for monolithic approaches [1]. This approach is reliant on a regularisation parameter ε, under
the requirement that h� ε, where h is the mesh size parameter. Therefore, at lower ε the necessity of
finer meshes can make it computationally expensive. Moreover, the actual solution of the numerical
problem can be dependent on h itself. Our work strives to develop a formulation with spatially varying
ε to alleviate mesh dependency, lowering the cost of this approach and making it more accessible.
The total energy in the system given by the standard phase field model is

E(u, c) =

∫
Ω

[1− c]2ψ(ε) + Gc
[
c2 + η

2ε
+
ε

2
|∇c|2

]
dx

ψ(ε) =
1

2
ε(u) : [Cε(u)] =

1

2
λ[tr(ε)]2 + µ[ε : ε]

(1)

where u, c, and ε are the displacement, phase field and strain respectively, ε is a constant regularisation
parameter, and Gc, λ and µ are material parameters. It has been shown that in the limit ε → 0 the
standard phase field energy functional E approaches to the discrete brittle fracture energy functional
in the sense of Γ-Convergence [2]. This implies increasingly smaller values of ε should be chosen, which
is ultimately computationally expensive. To circumvent this issue, we interpret ε as a field variable,
consequently argument of the energy function E. Furthermore, a regularization term βε is added to
the energy functional of the standard phase field model resulting in

E(u, c, ε) =

∫
Ω

[1− c]2ψ(ε) + Gc
[
c2 + η

2ε
+
ε

2
|∇c|2

]
+ βε dx (2)

now ε is spatially varying variable, and β and η are a penalty and model parameter respectively.
Minimizing the energy functional (2) with respect to u, c and ε we obtain the following Euler-Lagrange
equations

∇ · σ = 0 in Ω

cGc
ε
− 2 [1− c]ψ(ε)− Gc∇ · [ε∇c] = 0 in Ω

ε =

√
c2 + η

|∇c|2 + 2β
Gc

in Ω

(3)

In addition to these equations of motion (3), the typical boundary conditions for phase-field problems
are u = u0 on ∂Ωd, c = c0 on ∂Ωp and ∇c · n = 0 on ∂Ω \ ∂Ωp. As these are nonlinear PDEs the
choice of η and β is not straight forward and very sensitive. It is chosen such that the ε is smaller
at the crack-tip or in the region of larger stress and large everywhere else. The domain is discretized
using linear and quadratic finite elements for u and c respectively. The discrete problem is solved
using a staggered approach. We have implemented this for a Single Edge Notch Tension (SENT)
specimen as seen in Figure 1 for η = 421.87 and β = 3.125.
1Division of Engineering and Applied Sciences, California Institute of Technology, California, USA
2Lehrstuhl für Festkörpermechanik, Universität Siegen, 57076 Siegen, Germany
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Figure 2: Force vs displacement plot

Figure 3: Evolution of ε with displacement uy0 = 0.0007, 0.005047 and phase field at uy0 = 0.005047

The force vs displacement plots are largely comparable with that of the standard phase field model
of constant ε = 0.1 as in the Figure 2. Evolution of ε w.r.t. displacement can be seen in Figure 3 and
it illustrates ε is indeed smaller at the crack tip. The next step is to develop robust mesh refinement
strategy utilizing this spatially varying ε.

Acknowledgement : The German Research Foundation (DFG) is gratefully acknowledged for fund-
ing this research within the research training group GRK2423 FRASCAL.
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Grasping via kinematically reduced model of the hand

Uday Phutane, Michael Roller1, and Sigrid Leyendecker

The hand is a complex end-effector to model as a multibody system due to its 20 degrees of freedom
for the 15 joints. However, coordination has been observed between the fingers due to the underlying
muscle-tendon structure [1]. In the director formulation for multibody dynamics, see [2], to move the
hand from time node n to n + 1 local reparametermisation qn+1 = F (un+1, qn) is performed, where
qn+1 ∈ R288 and qn are configurations at time nodes n + 1 and n, respectively, and un+1 ∈ R26 is
the discrete kinematic update. The coordination between fingers can be expressed through a synergy
matrix S ∈ R20×15, which has been determined through experiments performed in [1]. By defining
a synergy vector zn+1 ∈ Rnz , where nz is the number of synergies, the joint angle update can be
calculated for 20 joints using anywhere between 1 to 15 synergies, through un+1 = Szn+1. The local
reparameterisation therefore reads as qn+1 = Fd (Szn+1, qn). The grasping is performed by solving an
optimisation problem to minimise J = J1 + J2. J1 minimises the distance between the finger and the
object, while J2 minimises the penetration between finger and object by maximising the tangential
contact between finger and object surfaces, see details and equations in [3]. Here, we present two

Figure 1: The final postures for grasping a cylinder (left) and a sphere (right) with 3 contact points.
The hand is kinematically actuated through 5 synergies which control the 20 joint angles.

grasps with a cylinder and a sphere, each performed with a single contact point on two fingers and a
thumb, as shown in Figure 1. In each grasp, the objective values at the final positions are 3.32e−12

and 7.85e−11 for the cylinder and sphere, respectively. Furthermore, an objective value of 1.49e−11

was obtained for grasping the sphere with only 3 synergies, showing the flexibility and the scope of
order reduction, thus saving computational costs.
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Understanding variational integrators in field theories

Rodrigo T. Sato Mart́ın de Almagro, Sigrid Leyendecker

Geometric integration involves the numerical solution of differential equations using generic or specific
methods that intend to preserve some or all features or underlying structures that the original problem
displays.
One particular branch of geometric integration methods that our chair is interested in is variational
methods [1, 2], which are already an important tool in the simulation of mechanical systems. These are
methods whose main domain of application encompasses all systems whose behaviour can be derived
from a variational principle such as Hamilton’s principle of stationary action, as well as systems related
to these but whose behaviour is not purely variational.
Such systems display important qualitative features that should ideally be present in the results of a
simulation, such as conservation of quantities due to symmetries in the system (Noether’s theorem)
or compliance with specified constraints.
Variational methods are already being applied in the study and simulation of standard mechanical
systems such as systems of massive particles and rigid bodies, as well as related optimal control
problems, where the dynamics are governed by ordinary differential equations (ODEs). Another
branch of application is on field theories, where the resulting equations are partial differential equations
(PDEs). These include the equations of finite strain elasticity for non-dissipative materials, perfect
fluids, electrodynamics and even those of general relativity.
The study and use of variational methods in this latter branch is still not as extended or as well-
understood as in the former. In many cases, these are being coupled with standard spatial discretiza-
tion techniques based on the finite element method, thus inheriting some of its strengths but also some
of its problems. For that matter, we are trying to understand the basics of these methods while also
trying to come up with better spatial discretization techniques.
Currently there are several problems we are researching:

• We are studying known multi-symplectic methods [3, 4] in the framework of variational inte-
grators to better understand the properties and expected behaviour of these methods as well as
obtain insight into the generation of more general methods. For this, we are mostly focusing on
the 2D Poisson and 1D wave equations, which are some of the simplest variational models in
PDEs, and serve as toy models for other systems such as the geometrically exact beam (fig. 1)
and plate.

Figure 1: A 2D geometrically exact beam with variable sections modelling a telescopic boom pinned
on one end and with an extendible support. This is an example of a constrained field theory
on a Lie group. Its flexibility has been exaggerated.
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• We are studying high order collocation-based numerical integration methods in triangular
meshes. Collocation methods on unstructured meshes of triangular elements (fig. 2) do not
seem to have been well-explored in the literature in favour of easier to implement and under-
stand Galerkin methods. However, collocation methods are devoid of certain numerical artifacts
that Galerkin methods can display [5], they can give us sharper accuracy estimates and have
interesting consequences as to the interpretation of the discrete version of a theory.

Figure 2: Single element 10-point Lobatto integration of the Poisson equation with unit source term in
an equilateral triangle. The method is exact for general polynomials in 2 variables of order
3 and the solution of the problem turns out to be one such polynomial, so the integration is
exact.

• Finally, in the standard mechanical front, we are also interested in extending the construction
of collocation nonholonomic methods in [6, 7] to Galerkin methods. This might lead to easier
construction of nonholonomic integrators.
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Forward dynamics simulation of a human leg with a carbon spring prosthetic foot

Eduard S. Scheiterer, Sigrid Leyendecker

To accurately simulate a given system, it is necessary for the model to represent the key aspects of the
system. These, of course, depend on the goal of the simulation and the available computing power.
In case of the human leg with a prosthetic foot during gait, the model has to represent the movement
of the different body parts while also capturing the deformation energy stored in the prosthetic foot.
In this work, thigh and shank are modelled as rigid bodies in the director formulation, see [3], while
the prosthetic foot is modelled as a predeformed geometrically exact beam, as seen in [1]. This allows
for analysis of the simulations results with respect to joint angles, segment positions as well as the
energy storage characteristics of the prosthetic foot. While the first two are obviously relevant to
human gait, the storage and release of energy in the prosthetic foot during gait is considered a key
aspect in prosthetic foot design, since it has a direct effect on the walking comfort of the patient.

The leg is modelled as a kinematic chain, i.e. a series of rigid bodies and flexible bodies connected
by joints. The hip is modelled as a spherical joint between the thigh and reference frame. The knee
joint is reduced to a single degree of freedom, the rotation about one axis, and is thus modelled as a
revolute joint and not as a sliding hinge joint. The prosthetic foot is rigidly attached to the shank,
mimicking a passive prosthetic foot. This means that there is no actuator inputting energy into the
prosthetic foot during gait. In this work parameters based on [2] are used for mass, inertia and size,
while the prosthetic foot is modelled after the Össur Vari-Flex® carbon spring prosthesis. Internal
constraints ensure the rigidity of the segments, while the joints and rigid attachment are enforced via
external constraints, shown in the following equations and explained in more detail in [3].
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Figure 1: Simulation result of the swing movement for the human
leg with a predeformed geometrically exact beam model
for the prosthetic foot.

gsph(q) = ϕ1 −ϕhip + %1 = 0

grev(q) =

ϕ2 −ϕ1 + %2 − %1

(n)T · d2
1 − η1

(n)T · d2
2 − η2

 = 0

grig(q) =


ϕ3 −ϕ2 + %3 − %2

d3
1 · d2

2 − η3

d3
2 · d2

3 − η4

d3
3 · d2

1 − η5

 = 0

Here, qj denotes the j-th segments
configuration, consisting of the centre
of mass location ϕj and the directors
dji , with i ∈ 1, 2, 3. ηk compensates
for initial configurations of the con-
straints, while %j offsets the joint loca-
tion from the centre of mass of body j.
The prosthesis’ deformation energy is
modelled with a St. Venant-Kirchhoff-
type stored energy function which de-
scribes an ideally elastic material be-
haviour, similar to Hook’s law for sim-
ple elastic material.

Wint(Γ,K) =
1

2
ΓT ·DΓ · Γ +

1

2
KT ·DK ·K.
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The material specific parameter matrices DΓ = diag(GA,GA,EA) and DK = diag(EI1, EI2, GJ)
consist of the Young’s modulus E, the shear modulus G and geometry specific parameters e.g. the
cross-section area A, the area moments of inertia I1, I2 and the polar moment of inertia J . The strain
measures Γ(q) and K(q) quantify shear, elongation, flexion and torsion.

In this simulation the model is subject to a gravitational field and no forces or moments are applied
to the system. In its initial state at t = 0.0s the system is at rest and the prosthesis is not deformed.
Figure 1 visualises the model and the results of the forward dynamics simulation, while Figure 2 shows
the energy evolution over time for multiple oscillations. The simulation shows a swinging motion of
the human leg with prosthetic foot, mimicking the swing phase of the human gait cycle. The Young’s
modulus of the prosthesis is reduced compared to carbon fibre laminate, in order to emphasise its
deformation. A variational integrator is used to solve the resulting set of equations, derived from
the discrete action principle for the discretised augmented Lagrangian, see [3]. As can be seen in
Figure 2 the energy is exchanged between the potential, kinetic and internal deformation energy. It
is important to note, that due to the variational integrator, which is structure preserving, the total
energy of the system is bounded for the entire simulation.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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0

5
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E
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]

extEPot
intEPot
EKin
sum

Figure 2: Evolution of the different energy components over time for the pendulum simulation.

With the forward dynamics simulation of the human leg successfully implemented, the next step is to
create different configurations and constraint settings that emulate phases occurring during natural
gait. Furthermore, it is possible to apply fuzzy forward dynamics to the model, via the graph follower
algorithm from [4]. For this, the main question is, what sensible target outputs are with respect to
human gait.
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Variational integrators used to solve a 1D wave equation

Martina Stavole, Sigrid Leyendecker

Variational integrators for mechanical systems are derived by discretizing Hamilton’s principle of stationary
action [1]. The variational derivation of the integrators guarantees some favourable properties such as good
energy behaviour meaning the energy error does not increase or decrease over simulation time but stays bounded.
If there are symmetries in the mechanical system (Noether’s theorem), variational integrators conserve the
corresponding momentum maps. As an example, it is shown here a variational formulation of the 1D wave
equation which is a second-order linear PDE and it is used to model small oscillation around the equilibrium.
In the continuous case, the Lagrangian of the system reads

L(u, u̇, u′) = T (u̇)− U(u′) =
1

2
ρu̇2 − 1

2
ku′

2

where T is the kinetic energy, U is the potential energy, ρ is the string density per unit length, k is the stiffness.
The local coordinate is u, u̇ = ∂u

∂t , u′ = ∂u
∂x , where t denotes the time and x the space. Applying Hamilton’s

principle yields the Euler-Lagrange equation.
In the discrete case, the trapezoidal quadrature rule is used to approximate the integral of the Lagrangian. For
the space-time integration, a discretization is defined in both time and space, where ∆t and ∆x are respectively
the time step size and the space step size. The discrete Lagrangian is an approximation of the continuous action
for one space time element, see Figure 1.a, reading

Li,jd (ui,j , ui+1,j , ui,j+1, ui+1,j+1) ≈
∫ xi+1

xi

∫ tj+1

tj

L(x, t, u, u̇, u′) dtdx

The discrete variational principle yields the discrete Euler-Lagrange equations. In order to uniquely solve the
dynamics of the problem, initial and boundary conditions are needed. In the post-processing the discrete
conjugate momenta are calculated by the discrete Legendre transforms. Figure 1.b shows the simulated energy
density evolution. The wave equation is just a simple variational model in PDEs studied in order to move to
more complex systems like the geometrically exact beam in the future.

x

t

ui,j+1

ui,j

ui+1,j+1

ui+1,j

∆x

∆t

Figure 1: a.Space time grid, b.Energy density evolution
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Analysis of multirate variational integrators and mixed order variational integrators by
Modulated Fourier expansions

Theresa Wenger, Sina Ober-Blöbaum, Sigrid Leyendecker

The simulation of mechanical systems that act on multiple time scales is challenging. For resolving the fast
motion a tiny time step is required, whereas for the slow motion a coarser approximation is accurate enough,
pointing out the conflict of highly accurate results versus low computational costs. The presented integrators
are designed to efficiently solve such multirate systems.

The derivation of the multirate variational integrators and the mixed order variational integrators bases
on a discrete version of Hamilton’s principle. The idea of the multirate approach is to split the variables into
slow and fast ones enabling to approximate them on different time grids and to use different quadrature rules
with different time steps to approximate the contributions of the action. Whereas in the mixed order approach
one time grid is used, but different polynomials are considered for the slow and fast degrees of freedom together
with different quadrature rules of appropriate order for the contributions of the action. Due to their variational
derivation, the integrators preserve the underlying geometric structure of the system as momentum maps and
symplecticity.

We consider a highly oscillatory dynamical system with a Lagrangian of form

L(qs, qf , q̇s, q̇f ) =
1

2
q̇T q̇ − V (q)− 1

2
ω2(qf )2 (1)

where ω � 1. The configuration q is split in ns slow variables qs and nf fast variables qf . The slow potential V
is assumed to be nonlinear. Systems of the form as given in (1) have some characteristics, what can be shown
by the modulated Fourier expansion, see [HLW06]. A slow energy exchange between the oscillatory components

takes place on the time scale ω. The energy stored in the j-th stiff component is Ij = 1
2 (q̇fj )2 + 1

2ω
2(qfj )2,

j = 1, . . . , nf . The total stiff energy I =
∑
j Ij is an adiabatic invariant with O(ω−1) deviations from the

initial value over very long time intervals.

For the multirate approach we introduce a macro time grid {tk = k∆T |k = 0, . . . N } with time step
∆T and a micro grid {tmk = k∆T + m∆t | k = 0, . . . , N − 1,m = 0, . . . , p} with time step ∆t = ∆T

p , p ∈ N.
For the mixed order approach one time grid, i.e. the macro time grid, is used. We focus on one special
variant each, where the symmetric trapezoidal rule is used to approximate the integral of the slow potential
on the macro grid. Both variants can be written in style of an impulse method with an explicit kick of the
slow force, updating the fast oscillations implicitly, and an explicit kick of the slow force in the end. In the
multirate framework the midpoint rule is used to update the fast oscillations on the micro grid. The mixed
order approach uses a s-stage Gauss collocation method to approximately compute the fast oscillations. Both
schemes can be interpreted as modified trigonometric integrators for a modified frequency ω̃. The capture
of the systems’ characteristics by trigonometric integrators as well as modified trigonometric integrators is
analysed by the tools of the modified Fourier expansion in [HLW06] and [MS14]. Following the analysis in
[MS14] it can be shown that both considered schemes conserve the oscillatory and total energy up to O(∆T )
and that they capture the energy exchange between the stiff components correctly.

The Fermi-Pasta-Ulam problem (FPU) is an example of a nontrivial highly oscillatory conservative sys-
tem with a Lagrangian of form as given in (1). Due to its rich multiscale coupling behaviour, the FPU is a
popular test problem for numerical integrators. It consists of 2` masses linked with alternating weak cubic
and stiff linear springs. The slow variables represent the location of the centre of the stiff springs and the fast
variables are their lengths. In our simulations we include six masses, thus three stiff springs. Figure 1 and 2
(left plot) show the phenomenon of slow energy exchange between the stiff springs I1, I2, I3 and the adiabtic
invariant I = I1 + I2 + I3. The evolution of the error in the total energy over time is shown in Figure 1 and 2
(right plot). Both, the mixed order and the multirate variational integrator, capture the stiff energy exchange.
The plots further show that the total oscillatory energy I and the total energy are conserved up to O(∆T )
with ∆T = 0.1.
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Figure 1: Mixed order variational integrator with ∆T = 0.1, s = 3: energy in the stiff springs and
total oscillatory energy (left), error in the total energy (right)

Figure 2: Multirate variational integrator with ∆T = 0.1, p = 5: energy in the stiff springs and total
oscillatory energy (left), error in the total energy (right)
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4.1 Teaching during Covid-19 pandemic

The year 2020 was distinct. The entire world has been facing a pandemic and had to adapt the old routine to
a new normality. This meant strictly following measures such as social distancing and hygiene best practices.
One of the most important measures that the Institute of Applied Dynamics followed and adapted this year was
the digital teaching. Most of our lectures, excersices and tutorials were streamed live, recorded and uploaded
via zoom, StudOn and other digital meeting platforms.

In the case of the matlab laboratory, the Maschinenbau CIP-Pool remained closed or in some cases remotely
inaccessible to students. Tutors acted accordingly and adapted the course using a remote connection with
the help of the ’Informatik CIP-Pool’. The students were able to performe the exercises remotely and receive
feedback in digital form.

The dynamic practical course reduced the number of particpants according with the university regulations, the
course took place with students on site following strict hygiene measures and social distancing at all times. This
implied, the students had to carry out the group activity of the experiments via zoom.
To accomplish the general social distancing and hygiene measures, LTD re-organised and adequated the rooms
with projectors, flexi-glas curtains and sanitation supplies.

Exams revisions 12.2020
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4.2 Motion capture laboratory

Our motion analysis lab is equipped with a camera and marker based optical tracking system. This includes 10
Qualisys MoCap high speed cameras and 2 Qualisys high speed video cameras, Noraxon MyoMotion inertial
sensors, Cybergloves III to measure hand joint angle kinematics, force plates, and Noraxon Desktop DTS
electromyography sensors.

A frame was constructed to bring the cameras closer to the markers in order to perform motion capturing
for small human actions, such as motion of hand digits. With this setup, kinematic parameter identi-
fication for joints in the human hand, especially the wrist, the metacarpophalangeal and interpalangeal
joints has been performed. This is an essential first step towards formulating a procedure for effective
parameter identification to setup subject-specific models. This will enable us to perform biomechanical op-
timal control simulations with higher levels of confidence and use the results as measures of human performance.

The motion capture laboratory increased its performance by taking a step forward with the measurement of
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patients in cooperation with the Department of Medicine 3 - Rheumatology and Immunology of the Univer-
sitätsklinikum Erlangen. One of this year measuremnets developed a SBF proposal; the test consisted of two
measurements without motion capturing equipment and a few more with equipment.

4.3 Dynamic laboratory

The dynamic laboratory – modeling, simulation and experiment (Praktikum Technische Dynamik) adresses
all students of the Technical Faculty of the Friedrich-Alexander-Universität Erlangen-Nürnberg. The aim of
the practical course is to develop mathematical models of fundamental dynamical systems to simulate them
numerically and compare the results to measurements from the real mechanical system. Here, the students learn
both the enormous possibilities of computer based modeling and its limitations. The course contains one central
programming exercise and six experiments observing various physical phenomena along with corresponding
numerical simulations:

• programming training

• beating pendulums

• gyroscope

• ball balancer

• robot arm

• inverse pendulum

• balancing robot

programming training
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AB

φ0

beating pendulums gyroscope ball balancer

PendelWinkelsensor

Schli!en

Servoumrichter

Bewegung

robot arm inverse pendulum balancing robot

4.4 MATLAB laboratory

The MATLAB laboratory (Praktikum MATLAB) is offered to all students of the Technical Faculty of the
Friedrich-Alexander-Universität Erlangen-Nürnberg. The course aims to teach the participants the basic skills
of mathematical programming in MATLAB. The course is offered in conjunction with the Chair of Applied
Mechanics (LTM), the Chair of Production Metrology (FMT) and the Chair of Engineering Design (KTmfk).
The first lecture is an introductory programming session for MATLAB fundamentals. Thereafter, every chair
presents a task related to mechanics and engineering, for example, the LTD task is to understand and simulate,
the dynamics of a crane. The task is introduced to the students through a theory lecture, which is then followed
by programming sessions.

4.5 Summer school: Fundamentals of beam theory and flexible multibody dynamics

The summer school “Fundamentals of beam theory and flexible multibody dynamics”, was organised and
conducted by the Institute of Applied Dynamics under the project ”Numerical Modelling of Highly Flexible
Structures for Industrial Applications (THREAD)”, from June 29th to July 3rd, 2020. The participants took
part via zoom worldwide.

The main objective of this training event was to let the researchers reach common ground. For this, they
were presented with classic and state-of-the-art models and analytic techniques used in describing beam-like
structures subjected to small and large deformations and flexible multi-body systems under the assumption of
small elastic deformations. An introduction to discretisation strategies and modal reduction was also part of
the programme.
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The summer school offered problem solving sessions for the participants where they were tasked to discuss and
solve analytic and programming exercises in small groups and a guided resolution at the end of each session.
The exercises were based on an industrial example provided by MEVEA.

As a result, throughout the course of the summer school the participants were able to interact with each other,
in spite of the current conditions, integrating knowledge exchange with social interaction.
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4.6 Teaching

Winter semester 2020/2021

Dynamik starrer Körper (MB, ME, WING, IP, BPT, CE, MT)
Vorlesung S. Leyendecker

Übung + Tutorium D. Holz, M. Klebl, H. Lang
D. Martonová, J. Penner

U. Phutane, T. Wenger

Mehrkörperdynamik (MB, ME, WING, TM, BPT, MT)
Vorlesung S. Leyendecker

Übung J. Penner

Geometric beam theory (MB, ME, WING, BPT)

Vorlesung + Übung S. Leyendecker
R.T. Sato Mart́ın de Almagro

Praktikum Technische Dynamik – Modellierung, Simulation und
Experiment (MB, ME, WING)

S. Leyendecker
D. Holz, M. Klebl

D. Martonová, J. Penner
U. Phutane

Praktikum Matlab (MB)
S. Leyendecker

U. Phutane, E. Schaller
A. Müller, M. Franz

Summer semester 2020

Biomechanik (MT)

Vorlesung + Übung S. Budday
geprüft 34 + 9 (WS 2019/2020)

Geometric numerical integration (MB, ME, WING, BPT)
Vorlesung S. Leyendecker

R.T. Sato Mart́ın de Almagro

Übung E.S. Scheiterer
geprüft 4 + 0 (WS 2019/2020)

Statik und Festigkeitslehre (BPT, CE, ME, MWT, MT)
Vorlesung S. Leyendecker
Tutorium X. Chen, D. Holz, U. Phutane

M. Klebl, D. Martonová

Übung X. Chen, D. Holz, M. Klebl
geprüft 283 + 310 (WS 2019/2020)
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Praktikum Matlab (MB)
Teilnehmer 56 S. Leyendecker

U. Phutane, E. Schaller
M. Franz, A. Müller

Fundamentals of beam theory and flexible multibody dynamics (THREAD)

Vorlesung + Übung R.T. Sato Mart́ın de Almagro
Teilnehmer 45 S. Leyendecker

Winter semester 2019/2020

Biomechanik der Bewegung (MT)

Vorlesung + Übung H. Lang
geprüft 15

Dynamik starrer Körper (MB, ME, WING, IP, BPT, CE, MT)
Vorlesung S. Leyendecker
Tutorium D. Holz, M. Klebl

D. Martonová, U. Phutane
R.T. Sato Mart́ın de Almagro

Übung D. Holz, M. Klebl
U. Phutane

geprüft 248 + 124 (SS 2020)

Mehrkörperdynamik (MB, ME, WING, TM, BPT, MT)
Vorlesung S. Leyendecker

Übung J. Penner
geprüft 46 + 21 (SS 2020)

Praktikum Technische Dynamik – Modellierung, Simulation und
Experiment (MB, ME, WING)

Teilnehmer 12 S. Leyendecker
X. Chen, D. Holz, M. Klebl

H. Lang, D. Martonová
J. Penner, D. Phansalkar

U. Phutane, R.T. Sato
E.S. Scheiterer

Praktikum Matlab (MB)
Teilnehmer 56 S. Leyendecker, U. Phutane

Ö. Akar, A. Müller, M. Franz

Additional exams

Hochschulpraktikum (M. Sc. Medizintechnik)
geprüft 1
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4.7 Theses

Master theses

• Fabian Bengl
Variational integration of the Liouville equation: Numerical experiment

• Emely Schaller
Modelling the human heart – Comparsion of MRI and simulation based cardiac motion

• Tianhui Zhang
Determination of kinematic parameters through motion capturing of human hand

Project theses

• Matthias Schubert
Control of an electromechanically coupled pendulum with MPC and DMOC

Bachelor theses

• Yousif Aljammal
Gelenkwinkelbestimmung beim menschlichen Gang aus optischem Tracking – Ein Vergleich

4.8 Seminar for mechanics

together with the Chair of Applied Mechanics LTM

09.12.2020 B.Sc. Julian Shanbag
Friedrich-Alexander-Universität Erlangen-Nürnberg
Entwicklung und Validierung eines Mehrkörper-Fußmodells zur Funktionsanalyse (juveniler)
Fußdeformitäten

10.11.2020 Prof. Dr. Michael Ortiz
California Institute of Technology, Pasadena, CA
Multiscale modeling of ductile fracture in metals

03.02.2020 Jun.-Prof. Dr.-Ing. Malte Krack
Institut für Luftfahrtantriebe, Universität Stuttgart
Intentional Use of Nonlinearity for Passive Vibration Mitigation

22.01.2020 Prof. Dr. Anne Koelewijn
Machine Learning and Data Analytics Lab
Friedrich-Alexander-Universität Erlangen-Nürnberg
Predictive Movement Simulations – Finding the Holy Grail of Biomechanics

4.9 Editorial activities

Advisory and editorial board memberships Since January 2014, Prof. Dr.-Ing. habil. Sigrid Leyendecker is
a member of the advisory board of the scientific journal Multibody System Dynamics, Springer. She is a
member of the Editorial Board of ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für
Angewandte Mathematik und Mechanik since January 2016 and since 2017 runs a second term as member of
the managing board of the International Association of Applied Mathematics and Mechanics (GAMM), as well
as a member of the executive council of the German Association for Computational Mechanics (GACM) and
member of the General Council of the International Association for Computational Mechanics (IACM).
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Since October 2017, Prof. Dr.-Ing. habil. Sigrid Leyendecker is an elected member of the Faculty Council
of the Faculty of Engineering at the Friedrich-Alexander-Universität Erlangen-Nürnberg, and in April 2019
was elected deputy Chair of the Qualification Assessment Committee (Eignungsfeststellungsverfahrens-(EFV-
)Kommission) of the Bachelor’s degree programme Medical Engineering, at the Friedrich-Alexander-Universität
Erlangen-Nürnberg.
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5.1 Reviewed journal publications

1. D. Martonová, D. Holz, M.T. Duong and S. Leyendecker. “Towards the simulation of active cardiac
mechanics using a smoothed finite element method”. Journal of Biomechanics, 2020 (accepted).

2. T. Leitz, R.T. Sato Mart́ın de Almagro and S. Leyendecker. “Multisymplectic Galerkin Lie group varia-
tional integrators for geometrically exact beam dynamics based on unit dual quaternion interpolation –
no shear locking”. Computer Methods in Applied Mechanics and Engineering, 2020 (accepted).

5.2 Invited lectures

1. S. Leyendecker. Geometric numerical integration in simulation and optimal control – and other topics.
Annual Meeting 2020 – Joint Training on Numerical Modelling of Highly Flexible Structures THREAD,
Kaiserslautern, Germany (Microsoft Teams), 19 -23 October 2020.

5.3 Conferences and proceedings

1. E.S. Scheiterer and S. Leyendecker. “Predeformed geometrically exact beam model for a dynamic-response
prosthesis”. In: Proc. Appl. Math. Mech.,PAMM, DOI:10.1002/pamm.202000152, 2020 (accepted).

2. X. Chen, S. Leyendecker and H. van den Bedem. “Kinematic Flexibility Analysis of Active and Inactive
Kinase Conformations”. In: Proc. Appl. Math. Mech.,PAMM, DOI:10.1002/pamm.202000166, 2020
(accepted).

3. Y. Lishkova, S. Ober-Blöbaum, M. Cannon and S. Leyendecker. “A multirate variational approach to
simulation and optimal control for flexible spacecraft”. In: Proeedings of the 2020 AAS/AIAA Astrody-
namics Specialist Conference, Lake Tahoe, 2020.

4. U. Phutane, M. Roller, A. Boebel and S. Leyendecker. “Optimal Control of Grasping Problem Using Pos-
tural Synergies”. In: Proceedings of the 6th International Digital Human Modeling Symposium, Skövde,
Sweden, 2020.

5. J. Penner and S. Leyendecker. “Defining Kinematic Chains for Musculoskeletal Optimal Control Simu-
lations via Automatic Differentiation”. In: Proceedings of the 6th International Digital Human Modeling
Symposium, Skövde, Sweden, 2020.

6. M. Lohmayer and S. Leyendecker. ”Exergetic Port-Hamiltonian Systems – a tutorial”. Student Compact
Course – Variational Methods for Fluids and Solids. Berlin, Germany (ZOOM), 12-23 October, 2020.

7. D. Huang and S. Leyendecker. ”On computational aspects of electromechanical coupling in geometrically
exact beams dynamics”. 2020 Online Symposium on flexible multibody systems dynamics. September
2020.

8. D. Phansalkar and S. Leyendecker. “On numerical challenges with a phase-field model for a mode I
fracture”. 7th GAMM workshop on phase-field modeling. Kaiserslautern, Germany, 10-11 February 2020.
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6 Social events

In 2020 most of the social activities were canceled due to the Covid-19 pandemic. Various hygiene measures
were established, as well as social distancing from the second quarter of the year.

Lunch after a succesful presentation at LTD 02.2020

Volunteering during lockdown

During the last weeks of March, the Institute for Polymer Technology (LKT) started the production of protective
equipment for the medical staff at Erlangen University Hospital. Our colleague Johann Penner, volunteered to
help in the manufacture of protective goggles and visieren for this important social cause.
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Saint Nicholas visits LTD 07.12.2020
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