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Zussamenfassung

Ziel dieser Arbeit ist die Entwicklung eines Optimalsteuerungsaufbaus zur
Durchfithrung dynamischer Greifsimulationen mit einer menschlichen Hand.
Dies geschieht in erster Linie mit dem Ziel, bestehende digitale Menschmodel-
lierungsumgebungen (Digital Human Modelling, or DHM) wie IMMA (Intelli-
gently Moving Manikin) mit Funktionen auszustatten, die iiber quasi-statische
Simulationen hinausgehen, wahrend sie Montageplanung und ergonomische
Studien durchfithren. Die Optimalsteuerung findet auch auflerhalb der DHM
Anwendung, insbesondere in den Bereichen der medizinischen Diagnostik
und Rehabilitation. Der Ansatz der Optimalsteuerung ist in der Lage, Se-
quenzen von Trajektorien und Steuerungen zu liefern, die zur Steuerung
biomechanischer Systeme bei der Ausfithrung einer bestimmten Aufgabe
verwendet werden, ohne dass Bewegungserfassungsmessungen erforderlich
sind. Eine solche Sequenz wird durch die Minimierung einer Zielfunktion
ermittelt. Der spezifische Ansatz zur Optimalsteuerung in dieser Arbeit
nutzt strukturerhaltende Zeitschrittverfahren zur Beschreibung der beiden
unterschiedlichen Formen der Dynamik eines mechanischen Systems. Die
approximierten Losungen, die mit Hilfe der vorgenannten Schemata erhalten
werden, weisen die Eigenschaften des kontinuierlichen Systems auf, zeigen
Drehimpulskonsistenz und ein gutes Langzeit-Energieverhalten.

Die Arbeit beginnt mit der Untersuchung des kinematischen Verhaltens des
Daumens, das fiir die Greifkompetenz von Primaten entscheidend ist. Der
Schwerpunkt verlagert sich dann auf das Verstindnis der Greifgrundlagen,
die sich vor allem aus der Sicht von Robotermanipulationsaufgaben ergeben.
In diesem Teil legen wir die Grundlagen fiir unilaterale Mehrpunktkontakt-
systeme. Diese werden durch kinematische Modelle erzeugt und charakter-
isieren die Kraft- und Geschwindigkeitsiibertragungseigenschaften zwischen
der Hand und dem Objekt durch Greifqualitdtsmafle. Die Mehrkérpermodelle
der Hand und des Objekts werden zusammen mit den Kontaktmodellen zu
Schliisselkomponenten bei der Entwicklung von Variationszeitintegratoren,
die durch ein diskretes Variationsprinzip abgeleitet werden, um die Dynamik




der Hand zu beschreiben, die nach einem Objekt greift und es dann manip-
uliert. Die diskreten Bewegungsgleichungen, die die Greif- und Manipula-
tionsaktionen darstellen, bilden ein hybrides dynamisches System, um das
Optimalsteurungsproblem (OCP) des Greifens aufzustellen, bei dem die Um-
schaltung aufgrund der Durchsetzung der Kontaktbeschrankungen zu einem
unbekannten Zeitpunkt erfolgt.

Das OCP wird als ein endlichdimensionales nichtlineares Optimierungsprob-
lem formuliert, das in Bezug auf ein geeignetes physiologisches oder aufgaben-
bezogenes Ziel minimiert wird, um drei Griffe zu simulieren. Insgesamt werden
vier Ziele aus den Perspektiven der Kontaktpunktpositionen, der Steuermo-
mente, der Kontaktkréfte und der Handhaltung gew&hlt. Die numerischen
Losungen, die durch die Minimierung dieser Ziele erzielt werden, weisen
ein gutes Mafl an Unabhéingigkeit auf und werden mit Hilfe von Mafizahlen
fur die Greifqualitat bewertet. Die Werte des Mafles fur die Uniformity of
Transformation zeigen eine gute Variation zwischen den verschiedenen Zielen
und Greifvorgdngen. Sie konnen verwendet werden, um Strategien fir die
Handhaltung iiber verschiedene Ziele hinweg zu formulieren. Nach Optimals-
teuerungsimulationen wird ein Ansatz zur Koordinierung der verschiedenen
Gelenke in der Hand mittels eines reduzierten Unterraums eingefithrt. Die
Vektoren, die diesen Unterraum aufspannen, werden als kinematische Syn-
ergien oder Eigengreifer bezeichnet. Deren Effektivitat zur Reduzierung des
Losungsraums fiir die Erzeugung von Handgriffhaltungen durch eine hybride
kinematische Formulierung wird vorgestellt.




Abstract

The core objective of this work is to develop an optimal control setup to
perform dynamic grasping simulations with a human hand. This is done
primarily with a view to provide existing digital human modelling (DHM)
environments such as IMMA (Intelligently Moving Manikin) the functionality
to move beyond quasi-static simulations while performing assembly planning
and ergonomic studies. The optimal control setup also finds applications be-
yond DHM, particularly in the areas of medical diagnostics and rehabilitation.
The optimal control approach is capable to provide sequences of trajectories
and controls that are used to drive biomechanical systems while performing a
particular task without the need of motion capture measurements. Such a
sequence is obtained via the minimisation of an objective function. The spe-
cific optimal control approach in this thesis makes use of structure preserving
time-stepping schemes in describing the two distinct forms of dynamics of
a mechanical system. The approximated solutions obtained by using afore-
mentioned schemes inherit the characteristics of the continuous system, show
angular momentum consistency and good long term energy behaviour.

The work begins with examining the kinematic behaviour of the thumb,
which is the crucial to the grasping competence of primates. The focus then
shifts to the understanding of grasping fundamentals that are mainly an
outcome from the view of robotic manipulation tasks. In this part, we lay
the foundation of unilateral multi-point contact systems. These are generated
through kinematic models and characterize the force and velocity transmission
properties between the hand the object through grasp quality measures. The
hand and object multibody models along with the contact models become
key components in the development of variational time integrators, derived
through a discrete variational principle, to describe the dynamics of the hand
reaching towards an object and then manipulating it. The discrete equations
of motion representing the reaching and manipulation actions constitute
a hybrid dynamical system to setup the grasping optimal control problem
(OCP), where the switching occurs due to the enforcement of the contact
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constraints at an unknown time.

The OCP is formulated as a finite dimensional non-linear optimisation
problem which is minimised with respect to an appropriate physiological or
task-based objective to simulate three grasps. In all, four objectives from the
perspectives of contact point locations, control torques, contact forces and
hand posture are chosen. The numerical solutions obtained by minimizing
these objectives exhibit a good level of independence and are assessed using
grasp quality measures. The values of uniformity of transformation measure
shows good variation across the different objectives and grasps. They can be
used helps to formulate policies regarding the hand posture across different
objectives. Post optimal control simulations, an approach to coordinate the
different joints in the hand by way of a reduced subspace is introduced. The
vectors that span this subspace are termed as kinematic synergies or eigen
grasps. Their effectiveness to reduce the solution space for generating hand
grasp postures through a hybrid kinematic formulation is presented.
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Just to settle it once and for all: Which came first, the chicken
or the egg? The egg [was] laid by a bird that was not a chicken

- Neil deGrasse Tysorﬂ

Lhttps:/ /twitter.com/neiltyson/status/296100559423954944



1 Introduction

There is a renewed interest in the recent years concerning the research of
digital human modelling (DHM) within the scientific and artistic communities.
After the first comprehensive handbook on DHM by Duffy [Duf(8], the
consolidation of different software tools has been done of late in the book
DHM and Posturography [SP19], as well as some review articles such as
[Cha08, [YSY ™15, WMW20].

DHM simulations are carried out using multibody models representing the
human musculoskeletal system as a kinematic tree with actuators. Across
academic and industrial research, the development of DHMs is of high im-
portance in human factor ergonomic and medical studies. The commercial
softwares used in industry, such as Jack, or RAMSIS or IMMA, are kine-
matically or quasi-statically driven solving posture optimisations of human
models. The inverse kinematic solutions required in applications such as
assembly planning, user envelope rendering or automotive system packaging
are obtained through the minimisation of certain comfort functions applied
to anthropometric models. The postures obtained are used to determine the
possible forces in the human joints for estimating probable health disorders,
however, with very low accuracy. On the other hand, DHMs are also used in
dynamic simulation to either simulate human responses to external stimuli,
such as occupant response in automotive pre-collisions with the help of soft-
wares like MADYMO. However, their major drawbacks are that they does not
allow for forward dynamics, which is a critical requirement in contemporary
times towards generating predictive motion through optimisation. In this con-
text, we discuss the collaborative MAVO project, EMMA-CC, which expands
to Ergo-dynamic Moving Manikin with Cognitve Controﬂ The project is
constituted with the following objective

“.. the development of an enhanced digital human model for

ergonomic assessment of dynamic motions by validated simulation

Lhttps://www.emma-cc.com/en.html
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to support the design of healthier and safer work places in future
product development and product planning processes.”

Another shortcoming with respect to the state-of-the-art DHM applications
is the lack of technical development in the space of modelling hand motion
realistically. In dynamic and even kinematic simulations, a physically and
anatomically correct hand model is necessary to perform interactive motions
with surrounding systems. The primary objectives in these simulations are
understand contact forces and joint loads during activities of daily living,
which are useful to assess work-spaces and design tools to avoid high risk of
developing cumulative hand trauma disorders, see [BA92, IMK92| [LMSB14].
These activities can be in different environments, such as vehicle integration
and packaging in assembly planning, reach analysis for household products as
well as automotives, and also prototype testing in the digital environment. The
primary human activity in these applications is grasping and manipulating
different objects. This activity can be broken down into a number of sub-
activities, namely, but not limited to, object or surrounding cognition, grasp
choice and closure through appropriate contact modeling, and task trajectory
planning.

With this motivation, within the ambit of the large-scale EMMA-CC project,
we formulate the objective of our sub-project as follows,

“Given a digital human model capable of cognitive decision-making
and a-priori knowledge of the surroundings, develop an optimal
control setup to perform predictive simulations of reaching and
manipulation tasks, e.g. moving a known object from point A to
point B with a human hand.”

The sub-project can be approached via two key methods. On the one hand, it
would be possible to choose an existing grasping simulator and incorporate it
into an optimal control environment. On the other hand, it would be logical to
begin with a tried-and-tested optimal control setup and include the grasping
functionality in it. This resembles a “chicken-and-egg” situation. Given
the black-box nature of available grasping simulators with their unproven
capabilities in handling complete grasping dynamics, it is preferred to go with
the second approach, i.e. to formulate an optimal control problem to perform
grasping simulations.




1.1 Robotic and human grasping

In the following sections, we first discuss the state-of-the-art with respect
to the grasping research, followed by the current trends in optimal control
simulations. Thereafter, we describe the outline of the work carried out in
this thesis.

1.1 Robotic and human grasping

A simplified way to sift through the enormous amount of grasping research
all would be to break it down into two groups, namely robotic and human
grasping. The research in these two areas are driven by different motivations.
In particular, human grasping research is directed from the point of view of the
biomechanical modeling, classification of the grasp types and its application in
ergonomics and medicine. On the other hand, robotic grasping focuses include
grasp stability, gripper design with their control and adhesion strategies, as
well as environment awareness with concepts such as collision detection and
symbolic task planning.

Earliest grasping research contributions shed light on postures and definition
of human grips, namely power and precision [Nap56| [Lan62], from anatomical
and functional points of view. This was followed by investigations into human
hand construction from a medical point-of-view [rC77, [CLCL81l, [ACCL79]
with tendon structure, hand normative models, and force analysis in fingers
and thumbs. This was motivated fundamentally by ergonomics, tool design,
and hand function and anthropometry [BA92l[BAG92|. For example, [COAT6]
presented a system of equations to describe the dynamics of power and
precision grips while solving for joint and tendon forces. The research followed
with further development of 3D-biomechanical models with detailed modeling
for the musculo-skeletal structure of the hand, see [VCJT03] [SB00| [Sac19)].

In addition, the kinematic behavior and modelling of the thumb joints played
an important role in human grasping. The opposition and circumduction
motions of the thumb makes humans (and primates) capable of performing a
wide assortment of grasps. These motions are possible due to the rotation
of the thumb metacarpal along its longitudinal axis, which is an outcome
due to the location and orientation of the two thumb rotation axes which
perform the flexion/extension and adduction/abduction motions. Through
cadaver measurements [HBM ™92, [HGB™95], these axes were determined to
be non-intersecting and non-orthogonal, which is in contrast to the many
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biomechanical models which model the thumb joint as a universal joint, see
JBAM20 . Additionally, when compared with physical
measurements, a thumb model with universal joints does not produce accurate
forces at its tip in different postures, see [VCIT03].

Another aspect of human grasping is the study of coordination between
the different joints,while performing reaching motions. These are possible
due to the hand actuation system, composed of the musculo-tendon structure
and the central nervous system. It was evaluated that number of dimensions
to symbolize the degrees of freedom of the hand was considerably smaller
than those that were measured [SFS98]. It was possible to establish a linear
relationship between the reduced and actual number of degrees of freedom of
the hand. This relationship has been exploited in simulators such as Syngrasp

and Graspit![MASV05] to reduce problem complexity and improve
grasp postured through coordinated hand prehension.

The mathematical formalisation of grasping concepts were set up in concur-
rence the advent of robotic hands or mechanical manipulators [SC82] [LS8S],
[MK16], as well as grasping simulators such as Graspit!,
OpenGRASP ﬂm, or Syngrasp. The development of these simula-
tors or manipulators was accompanied with the advancement of concepts
of grasp synthesis [FC92l [ZW03| [Shi%6], [CLA07, SEKB12], grasp analysis
[CMEJdPO3] or grasp posture optimisation [Bic92|
[KOYS01]. Grasp synthesis is the process of obtaining either one or multi-
ple postures with force closure for robotic manipulators with respect to a
particular object. These processes may be performed either quasi-statically
as in the case of many DHM environments, or in some cases, dynamically,
through a number of different algorithms such as rapidly-exploring random
trees [VDADI0, [AL20] or genetic algorithms [SS21]. The examples of grasp
synthesis algorithms strongly related to our work where task and motion
planning is done concurrently, has been demonstrated in recent contributions
|ZHZ*20, IDX*20, [GHRZI9], with a review in [GCHT21]. In particular,
i focuses on time minimization in the manipulation phase, by per-
forming a pick-and-place action of a garbage bin. Herein, an optimal solution
is one which is feasible with the lowest number of discrete time steps, subject
to certain kinematic constraints. In |[ZHZ 20|, a multi-level optimisation
problem is considered to plan the reaching and manipulation trajectories.
The different levels determine the optimal grasping locations, robot poses and




1.2 Discrete mechanics and optimal control

collision-free trajectories, in that order.

Grasp analysis involves the study of form and force closure grasps and
pushed for the definition of a ‘good’grasp, which were qualified through
certain criteria, namely grasp quality measures, see [RS14]. The involve
mainly the type of contact models and optimal contact point locations that
are used to achieve grasping. Over a period of three decades, the number
of such measures has matured encompassing several kinematic and dynamic
concepts, such as those derived from the grasp matrix and the hand Jacobian.
These measures have found usage as either metrics for ranking grasps or as
objective functions in optimisation problems to obtain grasping solutions.

In recent times, we have seen a few examples to include robotics-derived
grasping concepts in human biomechanical model driven grasping simulations.
[SBML™14] presents an example to perform human grasping simulations with
a view to evaluate compare contact forces with measurements by holding
objects of different weights and sizes. In this contribution, as also [RSGD19],
kinematic input was provided to the model by way of measurements obtained
with a Cyberglove® system (Cyberglove, Immersion Corp. San Jose, Califor-
nia, USA). While observing that physiological-based objectives such as the
maximisation of muscle endurance [CB8I] are inadequate to estimate contact
forces correctly, [SBML™14] stressed for the need of including “task-dependent
grasp quality measures”. Furthermore, in another study [LMSB14] made use
of grasp quality measures to characterize 36 hand postures obtained from
measuring joint angles while grasping a cylinder in different ways.

1.2 Discrete mechanics and optimal control

The implementation of optimal control methods to perform biomechanical
trajectory optimisations has been established through a number of examples
in recent years. Some of these include in sports such as cycling [JM20)
ZBP™17), golf [BMM20], running [NDHT20], as well as activities of daily
living such as gait [BBHIL [Kocl6] or lifting actions, see [BLL™ 18l IMSMT7].
The fundamental objective herein is to find controls, either joint torques
or muscle activations, to perform movement of a musculoskeletal system
is such a way as to minimise or maximise a certain physiological or task-
related criterion. The implementation in the above examples is normally
composed of mixing-and-matching of a number of concepts, e.g. choice of
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biomechanical modeling, optimal control through direct or indirect methods,
use of physiological or task-based objective functions, smooth or non-smooth
dynamics, tracking or predictive motion etc., to name a few.

A particular choice is made regarding the time-stepping scheme that is used
to numerically solve the equations of motion which describe the dynamics
of the system. In case of temporal discretization, which is commonly used
to solve the class of problems mentioned above, the accuracy of a numerical
solution is a consequence of the discretization technique, the parameters
used and the time-step size, while taking into account the computational
cost. In this context, we focus on the use of variational integrators that
are derived from a discrete variational principle [MWO01]. These variational
integrators preserve the structure of the dynamical system by inheriting the
characteristics of the continuous one. Also, they provide good accuracy and
convergence properties, along with symplecticity, momentum-preservation
and good long-term energy behaviour.

The discrete equations of motion pertaining to the variational integrator
are included in the trajectory optimisation as constraints [JMOBO05]. This
inclusion imparts the structure preserving characteristics of the variational
integrator to the optimal control problem, as shown in the direct transcrip-
tion method, DMOC (discrete mechanics and optimal control) [OB0§|. In
[LOBMO10], this method has been extended to include holonomic constraints,
named DMOCC (discrete mechanics and optimal control for constrained sys-
tems). This is a critical feature to solve non-smooth dynamics systems,
such as gait, or more importantly grasping, as the contact between different
mechanical systems is expressed via holonomic constraints.

1.3 Thesis outline

In this work, we apply the DMOCC paradigm to transcribe the infinite
dimensional OCP into a finite-dimensional non-linear constrained optimisation
problem to setup the grasping action. The OCP is modelled as a hybrid
dynamical system with two sequential phases having distinct dynamics for a
variety of kinematic and dynamic, physiological and grasp-based objectives.
The discrete equations of motion describing the different dynamics are derived
using a discrete variational principle, extending the non-smooth dynamics
derivation by [Joh13], [Koc16]. The grasping performance is also compared




1.3 Thesis outline

through the different solutions for the contact points and forces, and the
control torque actuation, as also through grasp quality measures.

Before moving to the actual derivation and the setup of the grasping OCP,
we focus two topics concering to the biomechanical model of the hand and the
fundamentals of grasping. In Chapter [2] we focus on the crucial component
of the human hand with respect to its grasping capabilities, namely the
kinematic model of the thumb. The chapter explores the complexity of the
thumb joints and discusses a method to understand and compare thumb
grasping performance across different models. The differences are present
due to the choice of different joint location and orientation parameters which
occur due to the variation in human anatomy across people. Chapter [3] gives
the reader an overview on the mathematical fundamentals that form the
building blocks to understand complex grasping topics. In particular, we
discuss the force and velocity transmission between the hand and the object
through different contact models and their influence on form and force closure
properties for a particular grasp. The chapter concludes with the description
of the hand and the object models that are used in the following chapters to
perform grasping simulations.

The next block of chapters address the core of this thesis, i.e. the grasping
optimal control problem (OCP). In Chapter 4| we discuss the mechanics of
deriving the time-continuous equations of motion for a mechanical system
with and without non-smooth dynamics. Thereafter, we derive the discrete
Euler-Lagrange equations of motions which represent the two phases in the
grasping simulation, by making use of the contact models in the previous
chapter. Following on, we build the discrete OCP and discuss the hybrid
dynamical system driving the grasping maneuver dynamics along with the
list of equality and inequality constraints that complete the OCP. Finally,
we review the objective functions which are minimised in the nonlinear
optimisation problem to generate the different grasping trajectories. With
this formulation, we perform the simulations in Chapter [5| with three grasp
types and different contact models. The optimisation results are compared
for every grasp maneuver across the different objectives with respect to the
contact forces and joint torques, among other quantities.

In Chapter [6} we put forth an example for a model reduction technique
based on the hand kinematic synergies to decrease the problem size and
computational complexity in grasping problems. Finally, in Chapter [7} we
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review and summarise the conclusions and outlook from the thesis.

1.4 Publications

The thesis builds upon the manuscripts written, along with the development
and implementation of the grasping OCP algorithm, completely by the author
and published over the course of research performed at the Institute of
Applied Dynamic{l in joint work with colleagues from Fraunhofer Institute
of Industrial Mathematicsﬂ and Fraunhofer—Chalmers—Centelﬂ under the
supervision of Prof. Dr.-Ing. habil. Sigrid Leyendecker®. In particular,
excerpts from the following three contributions are used in this thesis, namely,

[PRBT17] Uday Phutane?, Michael Roller®, Staffan Bjorkenstam?,
Joachim Linn®, and Sigrid Leyendecker?. Kinematic vali-
dation of a human thumb model. In ECCOMAS Thematic
Conference on Multibody Dynamics, pages 857-866, 2017.

[PRBL20] Uday Phutane?, Michael Roller®, Anja Boebel?, and Sigrid
Leyendecker?. Optimal control of grasping problem using
postural synergies. DHMZ2020, pages 206 — 213. Volume 11,
2020.

[PRL22] Uday Phutane?, Michael Roller®, and Sigrid Leyendecker?.
Optimal control simulations of two-finger grasps. Mechanism
and Machine Theory, 167:104508, 2022.

[PRBT17] forms the basis of Chapter [2| including the newly developed joint
description and accompanying results. [PRBL20] gives the foundation for
the use of kinematic synergies in the multibody director formulation and
to build towards a hybrid kinematic formulation to perform grasping using
synergies in Chapter @ The article [PRL22] covers the hybrid dynamical
formulation, the grasping optimal control problem and simulation results
which have been repeated in this thesis across Chapters [3]to[f] In Chapters [3]
and [4] the thesis provides the mathematical background and derivations for
the equations which build up the grasping optimal control problem while

Zhttps://www.ltd.tf.fau.de
Shttps://www.itwm.fraunhofer.de/de/abteilungen/mf.html
*https://www.fcc.chalmers.se/departments/geo/




1.4 Publications

Chapter [5| contributes with additional simulation results and discussions.
Some parts of the presented literature survey in the previous sections have
also been taken from the above listed contributions.

The remaining material is so far not published anywhere.




2 Thumb multibody model

Grasping is a unique function exhibited primarily by primates, through
the versatility of motion provided by the thumb and its motions such as
opposition and circumduction. The thumb is responsible for over 50% of
the hand function, see [Sou0I]. Anatomically, the thumb is composed of
three bones. From the base in the wrist to the thumb tip, they are the first
metacarpal (I MC), the proximal phalanx (PP) and the distal phalanx (DP),
see [Kap81]. They are connected in series by three joints with the trapezium
bone in the wrist. The carpometacarpal (CMC) joint connects the trapezium
and the I MC, the metacarpophalangeal (MCP) joint connects the I MC and
the PP, while the interphalangeal (IP) joint connects the PP and the DP.
The MCP and the CMC are saddle joints and have two rotational degrees of
freedom (DoFs), namely flexion-extension (flex-ext) and adduction-abduction
(add-abd), while the IP has a single rotational DoF i.e. flex-ext. The CMC
and MCP joints show a third motion of pronation-supination (pro-sup) or
internal rotation along their longitudinal axes during the combined motions,
which is not an inherent DoF of the thumb joints, rather an outcome, see
[CLCL8I]. Kindly bear in mind that this chapter is based on [PRB*17] to a
large extent.

The kinematic modelling of the thumb in multibody models is dependent
on the parameters used to describe the thumb joints. Historically, these are
usually extracted from cadaver studies, e.g. [HBM™'92, [HGB'95| and are
expressed with a mean + standard deviation, which does not represent the
human variability ideally. A kinematic model created using the mean values
can be at best a faux-generic model. In this chapter, we investigate the
kinematic behavior of such a generic (base) thumb model and four anatomic
variations and describe a validation method to assure proper thumb kinematics.
The method involves the comparison of work-space point cloud volumes
generated by the thumb tip, which are computed using a-shapes [DIL13].
We compare the grasping performance of the base model with respect to the
anatomically variable models.
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2.1 Multibody model description

We first introduce the multibody formulation used to model the thumb,
and thereafter the hand, in this thesis in Section 2-I] In the next sections,
we comment on the prevalent assumptions in thumb kinematic modeling
in Section 2:2) and the thumb multibody models for base and anatomically
variable parameters in Section [2.3] Thereafter, we describe the validation
methodology with results in Section [2:4] followed by the conclusions in
Section 2.5

2.1 Multibody model description

The multibody description in this work follows a constrained multibody
formulation, as described in [BS01) [BLOG, [Ley08]. It avoids the difficulties
posed by the rotational parameters, angular velocities and accelerations in
the Lagrangian. A rigid body is specified by a time-dependent parameters
describing its position ¢ (t) € R® and orientation {d; (t)}1=1,2,3 € R® with
respect to an inertial frame {es}r=1,2,3, as shown in Figure The redundant

e
€3 1

Figure 2.1: Description of a rigid body in three-dimensional space with respect
to an orthonormal inertial frame {er}r=1,2,3.

configuration variable for the rigid body is expressed with 12 variables as

)
d

qt)=|""| er® (2.1)
ds

ds
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2 Thumb multibody model

The orientation {dr (t)}r=1,2,3 consists of a body fixed triad. The body’s
rigidity causes the directors to stay orthonormal during the motion. These
kinematic orthonormality conditions are termed as internal constraints. There
are mint = 6 independent internal constraints for the rigid body, which are
specified through

-% (le ~dy — 1)_
% (dzT ~dy — 1)
Gint (q) = % (i -ds 1)) _ 0 € R°. (2.2)
di -d»
di -di
| dd

Thus, overall the rigid body has 12 - 6 = 6 degrees of freedom, i.e. three
translations and rotations each. To move the body between two discrete
time nodes, say from time node n to n + 1, we define incremental generalised
coordinates or a kinematic update u € R, w1 = [u¢n+1, 9n+1]

$n + u‘Pn+1

H/n; 'dln
qn 1:Fd Un+1, dn) = — 2.3
+ (Un+1, Gn) R (6.5 - don (2.3)
R 0/71; 'dSn

where 4y, , and 6,1 are the in translation and rotation increments, respec-
tively. Here, Fy is the discrete nodal or local reparameterisation, which satisfies
the internal constraints Equation , see [BLO6, [Ley08]. In Equation 7
R(e) refers to a rotation matrix calculated for an axis-angle formulation,
which can either be an exponential operator calculated from the Rodrigues’
formula, see [Ley08| [Rod40], or a Cayley transformation, see [Cay40].
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2.1 Multibody model description

2.1.1 Kinematic chains

Multiple rigid bodies, also called as links, can be coupled through constraints
on the kinematic level to generate multibody chains, see [HD64] [Ang13]. The
coupling can be through either lower pairs i.e. contacting surfaces or higher
pairs such as line or point contacts. Here, we present the general idea with
respect to the expression for the chain configuration, the constraint vector and
the kinematic update. The details and derivations have been already covered
in [BLO6 [Ley08] [LMOO0S, [LOBMO10]. For a multibody system consisting of

Figure 2.2: A generic kinematic chain example with two bodies having config-
urations q* and g*. Body b' is free to move in space and b® is connected to b
via joint j, described with holonomic constrains gizt (ql, q2) = 0. The bodies
b' and b? are connected to the joint via vectors o' and o2, respectively.

two bodies b' and b2 with configurations ¢ and g, respectively, the combined
configuration vector is

q=, (2.4)
q

Body b! is free to move in space and b? is connected to b! via joint j, described
with holonomic constrains g’ (ql, q2) =0 € R™eer. On each body, we define

a material point with local coefficients {gl}}le,z,g, whose location in the
inertial frame is given as ¢” + @® = @’ + Z§:1 04d%. The joint is located
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2 Thumb multibody model

in the bodies b and b? at @' and p?, respectively. The rigid body internal
constraints and joint external constraints can be written in vector form as

gint(q)

€ R'2F ™t (2.5)
9ear(a)

g (q) =

where gini(q) = [gmt(ql);gmt(qz)L as in Equation |D Also, the total
number of degrees of freedom for the second body is now reduced from 6 to

77 =6 —m?,,. This yields the size of the minimal coordinates or kinematic

update u’ € ]R6+Tj,ufl+1 = [uwn“, 041, OiLH]. Here, 67, € R™ is the
kinematic update for the second body depending on the joint description j.
The new location of the two bodies with respect to the increment w’ is given
through joint-specific nodal reparameterisation g,+1 = FC{ (u; 11 qn)7 which
satisfies the constraints g’(q) = 0.

In this work, we consider lower pairs, in particular revolute, universal
and fixed joints to model different connections in the hand anatomy. The
constraint vectors and their respective nodal reparameterisation, have been
detailed in [BLO6, [LOBMOI10, [Maal4]. Furthermore, we introduce a new
joint description in the following section, which anatomically captures the
complex motion of the thumb joint.

2.1.1.1 Non-intersecting and non-orthogonal axes

The CMC and the MCP joints are modelled as a joint system with two axes
which are non-intersecting and non-orthogonal (nino) to each other, as shown
in Figure It is a two degree of freedom joint with rotation axes n' and
n?, where n' is fixed to the first body and n? is fixed to the second body,
nt = Z?:I nirdi, n? = Z?zl n?rd?. A vector d = @? — @' + 0> — o'
joins the points P; and P, which define the locations for axes n' and n2,
respectively. This kinematic pair gives rise to a constraint vector with four
external constraints between the rigid bodies with configuration vectors g*

14



2.1 Multibody model description

Figure 2.3: The kinematic pair with non-intersecting and non-orthogonal axes
n' and n? between bodies b' and b? with configuration vectors q' and ¢2,
respectively. The local vectors o' and p? define the locations of the points
P, and P, for the axes n' and n2, while the vector d connects these points.
{er};_, 5 5 is the spatially fixed orthonormal basis.

and ¢? as
||Q02 - SOI + Q2 - Qluz - Hdeznitial
nt-d— (nt-d). .
g (q) _ ) ( , )znztzal =0¢€ R4 (26)
n”-d— (n )initial
1,2 1 .2
no-n - ('n )initial

wherein the first constraint keeps the distance between the points P; and P»
constant. The second and third constraints keep the relative orientation of
the non-intersecting and non-orthogonal axes n' and n?, with the vector d
constant. The last constraint keeps the angle between the two axes constant.
The kinematic update for the nino joint, through an increment w,+1 =
(uy,n“, 0,41, 6,11“, OZH) € R®, where 9,11“ and 03+1 are the incremental
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rotation around axes n! and n?, respectively, is given as

P+ Up,, 4

R: - di,

R: - d3,

R: - d3,

@n +Up, ., +R1- (Q}L +Rat - (dn —Raz- Qi))

Ri - Rui - Ri2 - di,
Ri-Ri1 - Rz - d3,
Ri - Rui - Riz - d3,

Gnt1 = Fy(Uny1, qn) =

(2.7)

where R = R (8.51), Ru = R (6,,m4 ) and Rux = R (67,3 ), are

rotation matrices for body b1, rotation about axes n} and n?2, respectively.

2.2 Thumb anatomy

Although the motion between the bones occurs due to the tendons and
the ligaments connecting the bones, the CMC and the MCP have often
been mathematically approximated, see [CLCL81] [Kap81], and implemented,
see [WAC™09, ISBML™14], in multibody models as universal joints, which
means that the two axes of rotations are orthogonal and intersecting. Also,
the flex-ext axis of the IP is assumed to be perpendicular to the sagittal
plane of the thumb. However, a universal joint does not allow for the
rotation of a single body along its longitudinal axis, which is observed in the
thumb. Also in a study done by Valero-Cuevas, see [VCIT03], when compared
with physical measurements, a thumb model with universal joints does not
produce accurate forces at its tip in different postures. However, from the
cadaveric measurements done by Hollister in [HBM'92] and [HGB'95], it
was determined that the axes of the joints are neither orthogonal to each
other or the bones nor intersecting with each other, as shown in Figure 2-4]
(left). This was later confirmed by a number of studies through different
methods, for example using optical measurements with surface markers, see
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2.3 Thumb multibody models

[CMO06, [CMM*08], or MRI, see [CMM™*10, SHSvdS14]. The CMC, MCP, IP

flex-ext axes move with respect to the trapezium, the I MC, and the PP,
respectively, while the CMC and MCP add-abd axes move with the I MC

and the PP, respectively, see [HBM 92, [ HGB 95, (GHB'95].

IP flex-ext

S\MCP flex-ext

MCP add-abd
o

S~ CMC add-abd

/CMC flex-ext

Figure 2.4: The figure shows thumb anatomy with bone and joint nomenclature
and associated multibody model with anatomically correct locations and
orientations for the MCP and the CMC, and IP axes.

2.3 Thumb multibody models

Following the anatomy, the thumb multibody model is shown in Figure 24]
(right) consisting of three bodies. The IP joint is modeled as a revolute
joint which has been described in [Ley08]. The CMC and the MCP joints
are modelled as nino joints, as shown in Figure [2.3] The dimensions of the
bones, i.e. the lengths and the radii of the bone in the radial and palmar
directions and the locations and orientations of the axes of rotation of the
joints have been obtained from cadaver studies from Santos, see [SVCO6], and
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2 Thumb multibody model

from Hollister, see [HBM ™92, [HGB™95], respectively.

adduction-abduction axis
(O |

 — L »:l - T< t
t/T 59.5 + 14.3%
1/L 12,5 + 6.2%
o 83.6° + 14.2°
8 78.3° + 12.9°

Figure 2.5: The CMC adduction-abduction axis, reproduced here from
[HBMT92], is located in the head of the I MC (above). The orientation
of the axis is defined with angles « and 8. The location of the axis is defined
with two length ratios t/T and 1/L. The values are shown in the table (below),
taken from [HBM™92|.

To describe in detail the complexity of the measurement adopting to multi-
body models, an example is provided. Hollister in 1992 provided measurements
for locations and orientations of the CMC axes from seven cadaver thumbs.
The add-abd axis of the CMC, as shown in Figure (left), is located in the
head of the I MC. In the study, its location in two directions is specified with
ratios (or percentages) which helps in scaling the model, while the orienta-
tion is reported with angles with respect to the anatomical planes. These
measurements are described with a mean 4 standard deviation with a high
anatomical variance, as shown in the table in Figure (right), which gives
little insight into the distribution of the values. To understand this variance,
which depicts the natural variation in the human population, a Monte-Carlo
study was performed by Santos, see [SVCO06]. The study concluded that the
anatomical variation converges to four multi-modal distributions of distinct
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2.3 Thumb multibody models

thumb models, shown in Figure [2.6| along with the base thumb model, named
as types I, I, IIT and IV and descrlbed in Denavit-Hartenberg (D-H) notation,

e [HD64]. These models have biomechanically distinct different kinematic
features, namely in types I and IV, which comprise 65.2% of the population,
the flex-ext axis of the MCP is distal to its add-abd axis, while it is opposite
in the other 34.8%. The next level of differences involves the common normals,
as described in the D-H notation, to the distal axis of the MCP and the
flex-ext axis of the IP. Specifically, the common normal to the MCP distal
axis points dorsally in type I and palmarly in type IV, while the common
normal to the IP axis points proximally in type II and distally in type III.
The base model is created using the mean values of all the above mentioned
cadaver measurements.

base . type I o type 11 . type III type IV
‘/F
TN TN TN Y

< 0 o 0 ~0 o
0 002 o 002 o 002 o 002 o 002

002

Figure 2.6: The different thumb models used to compare validation results.
The base model is created with the mean values from cadaver measurements.
The models named as types I, I, IIT and IV are taken from [SVCO06]. The
models have differences in the axes locations and orientations. For example,
the base, type II and type IIT models have the MCP add-abd axis proximal
with respect to its flex-ext, when compared with type I and type IV models.

2.3.1 Range of motion (RoM)

The RoM of the thumb has been investigated in a number of studies, e.g.
[CLCLRT, LKL 11]. However, they do not provide information such as loca-
tion of the axes around which the angles are measured, or provide specification
of the values of total flex-ext motion instead of only flexion or extension values
(similar for add-abd angles), like in . Furthermore, some use the as-
sumption that the CMC and/or the MCP joints are modeled as universal joints
and provide the Euler (cardan) angles ranges as done in [CLCLST],
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2 Thumb multibody model

Moreover, the studies which describe the axes do not provide the range of
motion values. A comparative study of the RoM angles given by different
researchers was done by [DIL13] and [CMOQG], for the maximum RoM, which
is the maximum extent to which the bones can be moved.

However, we also have limits on the range of motion with respect to grasping
activity. Grasping cannot be performed with the fingers in their extreme
positions, for example, holding a basketball with a flat hand is not possible.
To quantify the grasp RoM, a study was done [LKL"11] to measure the RoM
for six grasps, namely tip pinch, palm pinch, lateral pinch, cylindrical grip,
spherical grip and power grip. This RoM data was further post-processed,
see [DIL13| to determine the grasp RoM limits. The values for the maximum
RoM and grasp RoM are tabulated in Table

Table 2.1: Ranges of motion for thumb joints, taken from [DIL13].

joint maximum RoM grasp RoM
flex-ext add-abd flex-ext add-abd
CMC —20° - 25° 20° - 20° -16° - 8° -10° - 15°
MCP -60° - 10° -15° - 15° -24° - 23° -23° - 6°
P -60° — 20° - -49° - 0° -

2.4 Validation technique

For validation, there have been attempts to compare kinematics with a
thumb modelled with universal joints, e.g. see [CMM™08], or to compare the
Hausdorff distances in moving the first metacarpal from an initial posture to
a particular posture, see [CMM™10]. Also, with the addition of muscles and
tendons to the kinematic model, validation checks have been demonstrated
with thumb kinetics, by comparing muscle moment arms, see [CMO06], or the
forces in the thumb tips for different postures, see [GMI0]. Here, we compare
the kinematic performance of the thumb, without resorting to marker-based
physical measurements or introducing muscles in the model, rather which
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2.4 Validation technique

quantifies the point cloud workspace of the thumb tip.

The point clouds are generated for all the five models for the maximum
and the grasp RoMs. A quantitative indicator for the different point clouds
of the thumb tip can simply be its encompassing volume. These volumes
can be computed using a-shape, which is ”a generalization of the convex hull
of a finite set of points in the plane” (quoted from [EKS83]). For a set S
in R3, e.g. thumb tip end effector points, with a real constant 0 < a < oo,
an a-shape is the space generated by point pairs that can be touched by a
sphere of radius a. Also, we have lim S, = § and lim S, = conv S, which is
the convex hull for S. For detailed definition and explanation, see [EKS83].

2.4.1 RoM volume reduction for grasping

max ROM

z (cm)

y (cm) X (cm)

Figure 2.7: The point cloud for base model with maximum RoM.

To generate a point cloud, the thumb model is kinematically moved through
all its DoFs and a set is created with the thumb tip points in all positions.
The ranges of angles, as given in Table 2.1} for every DoF are partitioned
with 13 divisions to obtain a set of kinematic inputs to achieve a unique
position. A point cloud with the thumb tip points is created for the base
model and maximum RoM, as shown in Figure It is observed that the
a-shape volume does not change significantly with more divisions.

Using an a-shape radius of 0.5, the point cloud is enveloped with a smooth
a-shape with no holes and the volume of the a-shape is computed. The point
clouds are created for the base model and the four anatomically variable
models from [SVCO6], which are converted from the D-H notation to the
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2 Thumb multibody model

director formulation. This conversion is done to employ these models for
calculating internal rotation of the I MC, which is readily possible as the
directors of the I MC form the necessary rotation matrix. The volumes are
computed for both the maximum and grasp ranges of motion. The a-shapes
from point clouds for all the thumb models with the maximum and grasp RoM
are shown in Figure 2:8 The volumes for all the point clouds are tabulated
in Table

Wmax ROM Wlgrasp ROM Wmax ROM Wlgrasp ROM

2 (cm)
2 (em)

Wmax ROM Wligrasp ROM

ylm) w7 x(em) ylm) w0y (em)

2 (cm)

type I type IV

Mmax ROM Wgrasp ROM Mmax ROM Wgrasp ROM

ylem) w7 (em)

2 (cm)
2 (cm)

base model

o

o

y(em) w0, y(em) w0

X (em)

* X (em)

type 11 type 111

Figure 2.8: a-shapes for all models with maximum (blue) and grasp (red)
RoM.

From Figure[2.8] the overall shapes of the a-shapes look similar, which sug-
gests different individuals with different thumbs can cover a similar work-space
shape and can perform similar functions. However, on closer observations,
differences between the edges and corners are apparent. Also the grasp vol-
ume a-shapes lie completely within the maximum volume a-shapes for the
respective model, while having different shape than the grasp RoM a-shapes
for the other models. The differences are much more evident in the volume
reduction for the two RoMs, which we evaluate as the percentage reduction in
volume for grasp RoM with respect to maximum RoM to compare the different
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2.5 Conclusions

models. It suggests individuals with model type III can cover more volume
for grasping, however they are less effective in terms of the percentage of its
grasping capacity, when compared to the model type I. A key observation
from the values in Table is that the volume and volume reduction for the
base model lies within the range of anatomically variable models suggesting
that a base model created with the mean values from cadaver measurements
can be one realistic representation for a thumb model. The results from the

Table 2.2: Volume reduction results for all models.

tyIpe t}ﬁ)e ti/ﬁe t%/\;;e base
volume maximum RoM (cm®) | 319.9 | 390.8 | 508.0 | 493.1 | 386.3
volume grasp RoM (cm?) 100.1 | 104.2 | 129.6 | 123.2 | 99.3
% reduction 68.7 73.3 74.45 75.0 74.3

point cloud volumes suggest that the thumb model created using the mean
values from cadaver measurements can be useful with regards to defining
the reach of the thumb. The volume and volume reduction results for this
base model lies within the ranges of anatomically variable models. This is
important as it indicates that a thumb model with such measurements and
dimensions has as much grasping capacity as any thumb from the human
population.

2.5 Conclusions

The complex thumb anatomy is a major contributor to the human grasping
capability. Its modelling through joint axes systems with non-intersecting
and non-orthogonal axes allows for its typical opposition behaviour. The
validation methodology makes use of a technique that does not require motion
capture measurements. The validation results from the point cloud volumes
suggest that the thumb model created using the mean values from cadaver
measurements can be useful with regards to defining the reach of the thumb.
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2 Thumb multibody model

The volume and volume reduction results for this base model lies within the
ranges of anatomically variable models. This is important as it indicates
that a thumb model with such measurements and dimensions has as much
grasping capacity as any thumb from the human population. In the following
chapter, we focus on the development of grasping concepts, namely contact
modelling and quality measures, from the robotics perspective and discuss its
applications to the human context.
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3 Human grasping

The topic of grasping is a well-researched area with multiple review articles
published with regular fare, e.g. [Shi96], Bic00, IAHK ™09, [SEKB12, [BK19,
GAT19, |ZXZ720|. The research is dominated, however, through a robotics
point of view, wherein also the majority of key elements have been developed.
These include the design of the manipulator or the hand, the outline of the
object and surroundings, the control strategies, the cognition capability, the
contact closure and grasp synthesis algorithms, and if prescribed, the task
planning. Within the vast context, one can focus on human grasping with
respect to the research fields such as the biomechanical hand model, the
realization of force-closure grasps through well-defined contact models and
measures for grading grasp postures. These fields can be further distilled to
fundamental ideas such as the definition of a grasp, contact and force and
velocity transmission between the hand the object.

A grasp is defined as a set of multi-point contacts on the surface of the
object in order to control the possible movements of the object that can arise
due to any external disturbance, see [Bic00, [LMSB14| [PT16]. A contact can
be described as a unilateral joint that prevents a finger digit from penetrating
into the object or maintaining constant relative motion between object and
finger. The forces or moments transferred through the contact points depends
on the contact surfaces, and its frictional and stiffness characteristics. Since
there are numerous possibilities to obtain a grasp posture, there are some
postures which are definitely better than others. This classification of a
‘good’ grasp requires certain measures based on the hand posture relative to
the object. These measures are developed using two well-known matrices in
grasping research, namely the grasp matrix and hand Jacobian.

This chapter gives a short introduction to the theoretical grasping concepts
involved in this thesis and grasping research in general. In contrast to the
minimal coordinates multibody formulation, such as Denavit-Hartenberg
notation [HD64], used in many robotics and human grasping applications,
see [PT16l IMAQO4], the equations are presented in the director formulation.
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3 Human grasping

The chapter begins with a few definitions and basic grasping theory in
Section [3-1] It includes with setting up the equations for different contact
models (Section expressions for the grasp matrix and hand Jacobian
matrices (Section [3.1.5) and concludes with the notion of form and force
closures (Section [3.1.6). Thereafter, we discuss the grasp quality measures to
evaluate the ‘goodness’ of a grasp in Section [3.2] Having discussed the grasp
related topics, the chapter concludes with the description of the hand and
object models in Sections [3.3] and [3-4] that are used in the grasping optimal
control setup in this thesis. Certain sections of this chapter, in particular
the derivation of the grasp matrix and hand Jacobian matrices, have been
reproduced from [PRL22].

3.1 Grasping Theory

This section introduces the basic terminology concerning contact mechanics,
in particular the concepts and equations for twists and wrenches. Consider a
rigid object O whose position and orientation is described with configuration
q° = [cpo’T, dlo’T, dQO’T, d?’T] T with respect to an inertial orthonormal basis
{er}r=1,2,3, as shown in Figure The object is in contact with a finger
digit a with configuration ¢“ at point A. At this point, we describe an
orthonormal frame consisting of three vectors, namely, a direction n“ normal
to and pointing outwards from the object surface, and two orthogonal vectors
t* and o?, in the tangential plane T to the object surface at the contact
point. Altogether, [nA7 t4, oA] form the contact point frame.

The digit a is part of a kinematic chain, representing a finger in a hand,
as shown in Figure Let g € R! be the hand redundant configuration
vector, as described for a kinematic chain in Equation . The hand has
n; joints. Every joint can have either one (revolute), two (nino or cardan) or
three (spherical) degrees of freedom. Due to this, the configuration g of the
hand is restricted to a constraint manifold depending on the joint and rigid
body holonomic constraints g (g) = 0 € R™.

For every joint description, we can assign angular velocities or twists. The
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3.1 Grasping Theory

Figure 3.1: An object O with configuration ¢ is in contact with a finger
digit a with configuration ¢® at point A. [nA, t4, OA] forms a orthonormal

frame at the contact point with n* as outward normal to the object surface
and [tA, OA] spans the tangential plane T'.

combined twist vector for all joints can be written as

where [ —m is the minimal number of degrees of freedom for the hand. Similar
to twist, we can assign control torques to every joint and form the vector of
controls, as

T1
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3 Human grasping

We define a matrix P (g) € R™(!~™) which maps the twists, or minimal

Figure 3.2: A two dimensional view of an object O in contact with two digits
a and b of a hand at points A and B, respectively.

velocities in the constraint manifold tangent space to the hand configuration
redundant velocity g, as
qg=P- v. (3.3)

This matrix P is the null-space matrix for the kinematic hand chain, see
[LMOOS, [BLO6|. For the object, we describe the twist #© € RS as the vector
of its translational and angular velocities. The object twist #© € RS is related
to its redundant coordinate velocity through the object null-space matrix
PO ¢ R'2%6 yia

q° =P°.°. (3.4)

The twists at the contact points A and B are given as v° = {v*, P},
Also, consider the object is acted upon by an external force 7, € R® and a
moment 79 € R2. These are combined into_a vector called as the external
wrench Tegyt = [TtT, ' ] T €RC. In Figure the object is grasped through
the forces and twists are transmitted from the two digits of the hand through
the contact points A and B. The twists at points A and B, v* and v”
respectively, are expressed in the contact point frames in the respective points,
i.e. the translational velocities are expressed along contact frame directions
and the angular velocities are about these directions at points A and B.
Similarly, the contact forces and moments or collectively, contact wrenches
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3.1 Grasping Theory

74 and 77, are also the forces along and moments in the contact frames.

The total wrench 7,,, acting on the object through the contact points is the
linear combination of the individual wrenches, i.e.

Tapp = RYT . AL RET. 5, (3.5)

where RY = [nP, t?, oP] is the contact point frame at contact point P.
For the object to be have complete contact closure, i.e. the grasp should not
break under the influence of any external wrench T.¢, the condition to be
satisfied is

Tapp = Tewt- (3.6)

Here, the external wrench represents all possible forces and moments, such
as object weight, inertia force and other external forces. The condition
Equation corresponds to the fact that in complete contact closure the
translational and angular velocities on the hand and the object at the contact
points are equal. The force and velocity transmission though the contact
frames depends on the type of contact model used to close the grasp. We
discuss the widely used models in literature in the following subsections.

3.1.1 Point contact without friction (PwoF)

As the name suggests, this model has a one point of contact between two rigid
body surfaces, such as a single finger of the hand and the object surfaces. This
contact prevents the relative motion between them along the line normal to
the object surface. The normal acts as the line of force and velocity transfer.
The PwoF model allows for sliding due to the lack of friction due to the
absence of any force in the tangential plane. It is commonly used in robotics
with small contact patches and slippery surfaces [PT16, [LMSB14], however,
does not represent real contact situations [Cut89, [LBROQ].

We now describe the equations involved with the PwoF model with respect
to the contact point locations, kinematic constraints and the contact forces,
using Figure We extend the setup described in Figure and give the
kinematic description of the contact point A as

3
O oM ="+ ofds (3.7)
I=1
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Figure 3.3: Kinematic representation of a point contact without friction
contact model between digit a and object O. The vectors g*** and @
connect the mass centres of the digit and object, respectively, to the contact
point A. The dashed lines represent that the contact points may move within
areas S and S© on the digit and object, respectively, where the contact is
to be maintained.

through coefficients {Q?’a}[:1,273 in the digit body-axis system for digit a.

This location is shared by the object and is represented in the object body-axis
. A0

system through coefficients {07~ }1=1,2,3 as

3
0+ =%+ o df (3.8)

I=1

The coefficients {g?’a}1:1,273 and {g?’o}1:172,3 may change under the influ-
ence of an external wrench even while maintaining the contact. This is due to
the absence of friction to prevent sliding between the surfaces. To maintain
contact between the digit and the object, we enforce three sets of constraints.
The first two restrict the location of the contact points within their respec-
tive body-axis system, while the third constraint maintains zero distance
between the two points. We first prescribe specific areas S® and S on the
digit and object, respectively, where the contact is to be maintained. These
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limits are mathematically written as holonomic equality g, and inequality h,
constraints

90" (1" 02" 05") =0, kg (01", 05", 03%) <0 (3.9)
9,0 (077,057, 05) =0, ke’ (017,027, 05°7) 0. (3.10)

These constraints are described using the surfaces for the primitives used to
represent the digits and the objects. Additionally, the following holonomic
equality constraint is to be satisfied,

grwor (4,047,077, 07°°) = " + 0™ — (7 + ") | =0€R (3.11)

With Equations and , the contact points lie on the finger and
object surfaces, respectively, while with Equation , the two points stay
coincident.

In constraint-based formulation of dynamics, a holonomic equality con-
straint is accompanied by a constraint force, evaluated as the multiplication of
the transposed constraint Jacobian Gpw.r with Lagrange multipliers A € R
(or wrench intensities, as described in [PT16]). The forces on the hand and
the object are equal and opposite in nature and are evaluated as

T
Fr=Gul A= (%’(;;‘”) A eR (3.12a)
O _ ~O,T _ 0gPwoF g 12
1= Gl A= (50 ) AER (3.12b)

The force on the object f© can be transformed into a six-dimensional wrench
79 € R® using the null-space matrix for a single rigid body, see [Ley1d], as
¢ =pPOT. 59, (3.13)

This transformation is analogous to the twist-redundant velocity transform

used in Equation .

For the forces to be physically viable, they have to be acting on their
respective bodies. For example, if n* is the outward pointing normal to the
object surface, then the constraint reads

hnormal = nAYT . fo < 0eR (314)

for the force to be pushing on the object.
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3.1.2 Hard contact model

The hard contact model is used to model contact between rigid bodies with a
significant amount of friction with a very small contact patch [PT16} [LMSB14].
In contrast to the PwoF model, the wrenches and velocities are constrained
along all the three directions in the contact point frame, which includes
frictional forces in the plane tangential to the object surface. Considering
an appropriate amount of friction, the contact points do not slide on the
finger and object surfaces. Therefore, to maintain contact closure under an
external wrench, the contact points need to satisfy the following constraint
which reads

Figure 3.4: Kinematic representation of a hard contact model between digit a
and object O, extending the PwoF model from Figure [3-3] The contact point
vectors 4% and p*'© are fixed, while the orientations between the digit and
the object along the directions (represented by dashed lines) in the contact
point frame [nA,tA,oA] are free.

ghara (q%,4°) = " + 0" — (7 +0°) =0 € R (3.15)

In the kinematic chain of rigid bodies formulation, such a constraint is the
description for a spherical joint between two bodies [BLO6 [Ley0§|. Also, this
equation is simply the vector form of Equation (3.11)).
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3.1 Grasping Theory

The inclusion of friction is possible through a number of models, though
the use of the classical Coulomb’s model is very common. This model is
independent of the velocity and the contact area and uses a constant called
as the coefficient of friction pharq to constrain the forces in the tangential
plane relative to the normal force component, see Figure The wrench

Figure 3.5: The representation of the force f© lying inside a friction cone F
at contact point 0°°°.

intensities or Lagrange multipliers in this model is a vector A € R3. Similar

to Equation (3.12b|), the contact force applied by the hand on the object is
T
6ghard

oq°
From Equation (3.15]), we can evaluate the Jacobian

“A.

calculated as fo = G&fd A=

Ghlara=[-I — —o0I  —o5T  —ofI] eR™® (3.16)

where I is the identity matrix. This leads the contact forces acting on
the object to be simply the negative of the components of the Lagrange
multipliers —X = — [A1; A2; As], expressed in the inertial reference system.
Correspondingly, the contact force from the object to the hand is the vector
A, showing that the contact forces work as an action-reaction pair. Using the
Coulomb’s law, the contact force is constrained to lie in the friction cone F'

hprienara = || [T =n? @ 0] - (=X < pnaralln™™ - (=N (3.17)
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where ppora € R is the coefficient of static friction and n? is the outward
normal.

Remark 1 FEquation can also be reformulated to determine one set
of the contact point coefficients, provided the digit and object configurations
along with the other contact point coefficients are known. For example, if the
contact point coefficients for the digit are prescribed, then the object contact
point coefficients can be determined by,

(09} 1m125 = [d, a2, dS]" - (¢" + 2" — ¢°) (3.18)

This reformulation is useful in the grasping optimal control setup and will be
utilized in Chapter [}

3.1.3 Soft contact model

The soft contact model is a direct extension to the hard contact model. This
model is a representation for contact between bodies with deformable surfaces
e.g. the human hand, see [LMSB14, [PT16l [CLAQO7]. In this case, there exists
a contact patch in the tangent plane to the object surface normal, which
can generate a significant amount of friction restricting the rotation about
the normal, as shown in Figure [3.6] This implies that only relative rotation
about two directions in the tangential plane is permissible, which mechanically
resembles a universal or cardan joint. We recall that the contact point frame
R® = [nA, t4, OA] is composed of the normal vector n* and two vectors
t* and o” spanning the tangential plane.

The constraint vector for the soft contact model uses the hard contact
constraint from Equation to constrain the relative translation while
adding another constraint to constrain one rotation about the normal direction.
It is formulated as

Lpa+ga_ (§00+QO)

=0cR* 3.19
t*(¢")" - 0" (¢7) © (3:19)

Gsoft (qavqo) =

The vector t* (¢%) is expressed with coefficients {t7}1=1,2,3 multiplied with
digit directors {df}r=1,2,3. Similarly, the vector o® (qo) is expressed with
coefficients {0¢}7=1,2,3 and object configuration directors {d¥};=12,3. The
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3.1 Grasping Theory

Figure 3.6: Kinematic representation of a soft contact model between digit a
and object O, extending the PwoF and hard contact models from Figure [3-3]
and Figure respectively. Along with fixing the contact point vectors g®
and 0?©, the rotation around the normal n” is constrained.

dot product t* (g*)7 - 0® (qo) is constrained to zero to prohibit the relative
rotation between the digit and object surface about n,.

The wrench intensities used to describe the contact force are the Lagrange
multipliers A € R*. Similar to hard contact model, the contact force applied

by the digit on the object is calculated as f© = Gi’}; -A. It is transformed into

T
a force-moment vector again through 7© = PT . f© with 7© = [TtT, TGT] ,
where 7 € R® and 7 € R? are the force and moment components, respectively.

T
8 So

The first three rows of the constraint Jacobian G<, = (goft> € R*x12
q

are the same as for the hard contact model, i.e. 7+ = —\. However, since
the direction of the surface normal n? is a function of the object shape, the
Jacobian of the fourth constraint is relatively complicated. For this purpose,
T is transformed from the inertial frame to the contact point frame, i.e.
T4 = R* - 19. Thereafter, the Coulomb’s law is applied using [74'],,., which is
the component of the moment along the normal direction, in addition to the
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hard contact model from Equation (3.17))

I[I-n*@n'] nl | |
th’iC,SOft = [ } t + H [ G]nA H S HnA,T . (7A)|| (320)
Hhard Hsoft

where ptharda and psof: are the coeflicients of friction for the hard and soft
components of the applied force, respectively [KLB16].

The representation here can be improved if actual deformable bodies are
used, which represent in detail the contact patch area and accompanying
stresses. For example, the use of the elastic foundation models [Ker84]
CMAQ5] and finite element models [PGFESB'08| has been demonstrated to
model more accurate contact mechanics in biomechanical systems. However,
with such descriptions, the problem complexity increases to a great extent,
especially in the optimal control framework.

3.1.4 Combined contact constraints vector

Using the equations for the individual contact constraints from the sub-
sections above, we represent the combined vector for contact constraints
gc (q, qo) = 0 € RP™ when grasping with n. contact points using the
complete hand, as

gc (q,qo) =193 (quo) =0, (3.21)

Lgn. (2.9°) ]

Here, g; (q, qo) for i = 1,...,n. can be either of three Equations ,
or representing either of the three contact models. For the
sake of brevity, the contact point coefficients o € R*™¢, 0@ € R*™¢ from
Equation are omitted, where g and o consists of the n. contact point
coefficients with respect to the hand and object, respectively. The factor p
relates to the size of the contact constraints, i.e. p = 1,3 or 4 for PwoF,
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3.1 Grasping Theory

hard or soft contact model, respectively. The wrench intensities are similarly
ordered to form a combined contact wrench vector Ac € RP™™e

Al
A2
Ao = | A3 |. (3.22)

An,

The gradients with respect to the hand and object configurations are then
simply evaluated as,

91 (4.4°) \ | [ (091 (2.4°)
oq 0q°
9g2 (2,9°) 9g2 (2,9°)
Ge (a,4°) = 99 and G (q,4°) = 99°
<8gnc (2,4°) > (f’ignc (2,4°) )
0q dq°
i i i (3.23)

respectively. Following on, the contact forces acting on the hand and the
object systems, respectively, get evaluated as

fo=GE - Ac = Z (GT -], (3.24)
i=1
f&=G2" - Ac = Z [GPT -] (3.25)

=1

The complete constraint vector is used in the following to set up relations for
grasp analysis.
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3.1.5 Grasp matrix and hand Jacobian

The overall behaviour of the hand and object systems during grasping is
analysed using two matrices, namely the grasp matrix G, and the hand
Jacobian H,,, see [PT16]. These matrices characterize the velocity kinematics
and force transmission properties between the fingers and the object through
the contact points, using the terms introduced in Figure[3:2] The grasp matrix
GL € RP™*% maps the object twist v to the twist at the contact points
v ie v =GYL - vO, for a closed contact with n. points. Correspondingly,
the wrenches A¢ applied at the object contact points get transformed to a
collective wrench or applied torque as Tqpp = GuAc. The hand Jacobian
matrix H, € RP"X(=™) maps the joint twists v to # and we have the
relation v“ = H,, -v. Also, in the wrench space the hand Jacobian transforms
the contact wrenches to the joint torqueb applied, as 7 = H, - Ac. The

relations between G, GL, H,, and HY is summarlsed 1n Figure
Hand Contact points

Y ?
H, V¢ = GTLO
twist space e RI-™ v c RP " v? eR® vC = GuAo
Tapp — Gu)\c
h Rl m A RP e o RG
wrench space | T € c € Tapp € = H Ao
G.
A

Figure 3.7: The relationship between the object and hand twist and
force/torque spaces through the G, GT, H,, and H! matrices, repro-
duced from [RS14].

. .Q
-+

The method to derive the expressions for these matrices has been detailed
in a number of places, most notably in [PT16], which simply put is quite
cumbersome and tedious, though mechanical. In the director formulation,
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3.1 Grasping Theory

we use a similar idea to derive the expressions using the constraint that the
contact closure is fulfilled in the twist space,

(Vc)hand o (Vc)object _
H, v-G. v° =o. (3.26)

Taking a time derivative of the constraint vector Equation (3.21}), which
is enforced during the manipulation phase, and using from Equation (3.3
q = P - v and Equation (3.4) q° = -P° - 1%, we get

9gc ogc 0 _ dgc ogc o .o
. “9¢ | .P. Pe. -
@90 (04°) =354t 5547 =5 Pvt g5 POow 0
which is equivalent to H,-v + (—GUT) 0 =0
0 ,q°
with H, = (gc(qq) .P> (3.27)
oq
T
oge (4.4°) o
G, =—-|—+——+-.P 2
( 940 (3.28)

and consequently, we obtain the simple expressions for the hand Jacobian

H, (Equation (3.27)) and the grasp matrix G, (Equation (3.28])).

3.1.6 Form and force closure

Once a multi-point grasp closure has been achieved, the first step in grasp
analysis is to evaluate its closure properties, in essence to understand how
many contact points with a particular contact model are required to completely
constrain an object. These questions are answered through the concepts of
form and force closure that have been discussed in a number of contributions
and text books, for example, [Bic94, [BEH99, BEHO03, [PT16, [CLAQOT, [SKG12,
Zhel9] to name a few. To describe briefly, we summarise the explanation
from [BFHO3| [PT16].

Consider a two-dimensional example of a box, which is grasped in such a
way that it is completely immobilised using the PwoF contact model, as shown
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3 Human grasping

| ¥
&

Figure 3.8: Left: Form closure for a two-dimensional object achieved with
four contact points, each modelled with PwoF contact model. Right: Force
closure for the similar object possible with two contact points modelled with
hard contact model.

in Figure [3.8] (left). This implies that the object does not break contact due
to the application of external wrench in any direction and of any magnitude.
Such a condition would be achievable through the use of four contact points,
as shown by Reuleaux, see [Reu76]. This condition is termed as form closure.
In three-dimensions, seven contact points are needed to achieve form closure
for an object with six degrees of freedom [Som00]. In practical scenarios, this
can be explained with a human grasp performed with the fingers along with
the palm to restrict the complete motion of the object. Such a grasp is also
termed as a power grasp, see [Lan62, [PT16]. However, in human and robotic
grasping, closure with lesser number of contact points is performed with the
help of friction, e.g., while performing precision grasps [Lan62]. In particular,
for the same object, as shown in Figure [3.8] (right), two contacts with hard
fingers will resist external wrenches along all possible directions, which can
be countered with applied forces lying inside the friction cone defined by the
coefficient of static friction, see [MC94] [Che06]. This condition is
termed as force closure. In three dimensions, grasp configurations with three
hard contacts or two soft contacts are required to achieve force closure. It
is also a very active research area, wherein different methods are analysed
which can generate optimal force closure grasps, for example one can read

[BFH99, BFHO3, [RB96, [Ngu88, [Zhel9, Bic00, MAG4, [ZW03, [ZQ06].
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3.2 Grasp quality measures

3.2 Grasp quality measures

In grasp planning, it is possible to obtain different of configurations with a
particular number of contact points for a specific object, each with force closure.
To adjudicate whether a certain grasp is better than another, quality measures
have been developed to determine the ‘goodness’ of a particular grasp. The
quality measures have been developed using the concepts covered in this
chapter, namely, the grasp matrix [LS88| [KOYS01], the hand Jacobian [Shi96),
SCR82], the grasp wrench space [Pol94] [FC92, [ZQ00], as well as configuration of
the hand [Lie77, [PSST97]. A complete review of such measures has been done
in [RS14]. While it may be desirable to use as many possible qualitz measures
to compare the different grasp configurations, [LSBJB™ 12| showed the inherent
similarities between the different measures, thus reducing the overall list from
[RS14] to a select few. We employ some of these measures as objectives
in our nonlinear optimisation setup, provided they are twice continuously
differentiable. We select two of those that are not twice differentiable to be
used as quality measures in this thesis and are introduced here.

3.2.1 Grasp isotropy index

The grasp matrix G, transforms the Lagrange multipliers Ac to the net
contact force G, - Ac on the object. Its six singular values o¢, denote the
grasp capability of withstanding external wrenches along the six translational
and rotational directions. The quality index is computed as the ratio of the
smallest to the largest singular value and called the grasp isotropy index.
This means that the higher the value for this ratio, the better the object is
isotropically controlled in all possible directions, see [LS8S].

(UGV )mzn

(GGV )maz

Q1= (3.29)
Extending the two-dimensional example in Section [3.1.6] in three dimensions
for a grasp with two contact points modelled as hard contacts, the object is
not fully constrained, as there is free rotation that is possible about the line
joining the two contact points. This is reflected in the grasp matrix by the
fact that the last singular value (0@, )4 is zero. Therefore, for this grasp, the
smallest singular value is taken as (og, )5 as (0@, ),,;, in Equation ,
whereas for other grasps, it is (oq,, ).
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3.2.2 Uniformity of transformation index

The joint torques contribution to the contact forces Ac applied to the object
at the contact points is calculated through —HZT -Ac. To provide an equitable
contribution of joint torques to the contact forces, it is desirable to have a
hand posture away from configurations in which certain joint torques produce
no wrench on the object. For this, we compute the singular values of, and
obtain the ratio of the smallest to the largest singular value. This ratio is
called the uniformity of transformation index, with a higher value signifying
better object control ability.

Q2 = (@1 )i (3.30)

(OH,) max

Till now, we focussed on developing the mathematical basis for grasp
stability and quality determination through contact point models. From here,
we introduce the hand and the object rigid body models that will be used to
perform the grasping simulations in the following chapters.

3.3 Hand Model

We consider a two-finger rigid multibody model for the hand, as shown in
Fig. modelled with time-dependent absolute coordinates q(t) € @, where
Q is the configuration manifold. Using the description in Section 2.1} a
single rigid body b is represented by twelve degrees of freedom ¢° € R'?
comprising of a position vector gob of the centre of mass with respect to a
global inertial frame and an orthonormal body-fixed coordinate frame, also
called a director triad di, dz2, ds € R? which represents the orientation of the
body, from Equation . The orthonormality condition is enforced through
gl (qb) = 0 € RY i.e. six internal constraints which results in six degrees
of freedom for the body b, listed in Equation .

The hand is composed of nine bodies with the forearm, the wrist, the thumb
(three bodies) and the index finger (four bodies), i.e. b =1,...,9, due to
which we obtain a configuration vector q (t) € R',l = 108. The bodies are
connected to form a tree-like structure through a combination of revolute
[Ley11], cardan [ML13], nino (non-intersecting and non-orthogonal axes, see
[PRB™17]), and fixed joints, as shown in Fig.|3.9} The forearm is connected
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3.3 Hand Model

R cardan C; nino N; revolute R fixed F
PP — proximal phalanx
R MP — medial phalanx

DP — distal phalanx
nino — non-intersecting, non-orthogonal

Figure 3.9: The two-finger hand model with the joint axes for different joints.
The adjoining table shows the joint types.

to the ground with a cardan joint. The wrist is treated as a composite body
for its eight individual bones and is connected to the forearm with a cardan
joint. The four fingers, namely, index, middle, ring and little, are modelled
similarly. The index finger, consisting of the metacarpal (MC), proximal,
medial and distal phalanges, is fixed completely with respect to the wrist,
followed by a succession of a cardan joint for the metacarpophalangeal (MCP)
joint for flexion/extension (F/E) and adduction/abduction (A/A) motions,
see [Kap81], and revolute joints for the proximal and distal interphalangeal
(IP) joints for F/E motions. These joints are highly idealised, as implemented
in [Maald] for the upper extermity and in [KL16] for lower extremity, with
the joint rotation axes perpendicular to the anatomical planes. The thumb
is however modelled with joint axes skewed to the anatomical planes, as per
the measurements suggested in [HBM™ 92|, [HGBT95|. Furthermore, instead
of the model described in [LMSB14] %:Bﬂg 4 IZ with sequential revolute
joints, we implement a two degree of freedom joint with non-intersecting and
non-orthogonal (nino) axes for the carpometacarpal (CMC) and the MCP
joints for F/E and A/A motions, with relations from Equation . The
thumb IP joint is a revolute joint for F/E motions. These joints are modelled
through holonomic constraints gez: (@) = 0 € R, Also, accounting for the
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internal constraints for all bodies, we require gin: (q) = 0 € R4, resulting
in gint (Q) = [gint (Q) s Gext (Q)] =0 € R"'m = 41+54 = 95. In
summation, the redundant coordinates are constrained holonomically to the
(I —m) = 13 dimensional constraint manifold which is locally parameterised
by w (t) € R' minimal coordinates for the hand.

The measures of hand length and hand width are chosen for a 50th percentile
male, [0D89]. They are used to calculate the specific dimensions of the finger
digits modelled as cylinders, as shown in Figure[3.10] using the relations from
[SBOQ]. The cylinder cross section is represented by the directors d%, d5, while

Figure 3.10: The surface S° limiting the contact point @° on the finger digit b
with radius r* and length 2¢°. The directors d%, d5 represent the cross-section,
while df represents the axis.

the cylinder axis is represented by dj.

For a contact point ” to lie within an area S?, as specified in Equation 7
the contact point coefficients (,Ql{, Qg) are used in an equality constraint for
the point to lie on the cylindrical cross-section via

ga (e%,08) = (&))" + (e8)* = ()" =0, (3.31)

where r? is the digit radius. Additionally, inequality constraints are used,
firstly, for the third coordinate 3 to lie within the finger length, and secondly,
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for specific grasping areas, such as on the palmar side of the digit, as opposed
to the dorsal side. Collectively, we can write them as,

Qli —C
2 — oY
Qg —C3
b(b b b
ho (Ql, 02, Qs) = w1 =0 (3.32)
C4 — 02
Qg —Cs
L6 — 05
where the parameters ci, ca, ..., ce represent the areas S° on the digit for

particular grasps.

Finally, the hand is actuated through a minimal number of joint torques
7(t) € R'®. They are multiplied by a transformation matrix BT (q) € R'8*!3
to give the redundant force f (q,7) = BT (q) - 7. The method to compose
such a transformation matrix has been demonstrated in [Maal4l [Ley1T].

3.4 Object Models

The rigid object to be grasped is also modelled with redundant coordinates
q° € R'?, subject to internal constraints g5, (g) = 0 € RS. In this
work, we grasp objects with primitive shapes, specifically, cube, cylinder or
sphere, with specified dimensions. Similar to S°, we can define the grasping
areas S on the object for the three geometries. The object has uniform
density with its mass centroid coinciding with the geometric one. For every
object, we write expressions for the contact points to lie on their surface and
the normal vector at those points.

3.4.1 Box

A box is described with three lengths 2¢,2b and 2h and six planes, each
perpendicular to one of the directors, as shown in Figure For a contact
point o© on a plane, its location is described by the equation

ggo (07, 05,05) =n" (e° = C) =0, (3.33)
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front  dS
Figure 3.11: The plane definitions on a box along with location of contact o©

and the normal Ny, at that location.

where 7 is the normal to the plane and C'is a point on the plane. In particular
for our model, we describe the six planes in Table [3.1] If the point must lie

Table 3.1: Plane definitions for box

plane n C
front d9 ed§
back —dY —ed?
right ds bdS
left —d§  —bdS
bottom  dY hd$
top —d$ —hdS
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on the ‘right’ plane, the inequality constraints are

08 —¢

—0— 0%

hgo (o ,05,05) = | 2h <o. (3.34)
03 —

—h — of

The inequality constraints for other planes change accordingly. Following on,
we express the orthonormal basis at the contact point using the director along
the normal to the plane, and other two directors forming its tangential plane.
E.g. for the ‘right’ plane, the orthonormal basis is

[nboa:a tboa:a Obox] = [dlov d207 dSO}

3.4.2 Cylinder

A cylinder is described with two dimensions, namely radius r and axis length
20. As with the finger digit in Section the circular cross section of the
cylinder is described with directors d,dS, while d§ represents its axis, as
shown in Figure The contact point @€ is constrained to lie on the curved

.

o Tl,cyl

+@~.
e

2]

dyf

¢

Figure 3.12: The depiction of contact surface on a cylinder with contact point
location QO and the normal n.,; at that location
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surface through equality constraint,

9% (07,05,05) = (¢9)" + (e5)* —r* =0 =0, (3.35)

along with inequality constraint to lie withing the length of the cylinder
through inequality constraints,

o O O O ng_g
hgo (91,92&3): )0 <o0. (3.36)
—£— 03

Additionally, we define an orthonormal basis [ncyl, teyi, ocyl} at the contact
point @ on the cylinder curved surface. The normal n is computed through
0 30 O 40

d d

Nyt = o1di + 03ds (3.37)
r
Thereon, one of the vectors in the tangential plane is the director along the
cylinder axis, t.y = dS, and the third vector is computed through the cross
product
Ocyl = Myl X tcyl

3.5 Summary

The chapter discussed the steps normally followed in the mathematical repre-
sentation of grasps beginning with the understanding of the concepts of twists
and wrenches. These then included the evaluation of the expressions for the
contact forces that are applied through the different contact models. The
combined contact constraints vector was then utilized to develop expressions
for the grasp matrix and the hand Jacobian so as to easily calculate two
widely used grasp quality measures to compare grasping performance. Finally,
the rigid and multibody models were introduced while elaborating on the
location of contact points on their surfaces. The fundamentals laid in this
chapter, particularly the contact constraints and the grasp quality measures,
form the core elements in the development of the grasping optimal control
problem in the next chapter and the evaluation of the results obtained therein.
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4 Grasping optimal control setup

The application of optimal control methods to simulate mechanical systems
has been well established in [OB08| [LMOOS] [Siel12] [Flal3]. The approach has
been utilized to simulate electro-mechanical [Sch18| [PSL17], feedback control
[GL19] and more notably, biomechanical systems [ML13, [KRLI7, BNCT17]
showing its modularity, flexibility and robustness. While there are examples of
performing trajectory optimization of biomechanical systems aided by motion
capture and/or electromyography measurements [MTLI0, NDH™20, BBH11]
ORB™20|, we focus on examples with predictive simulations [Kocl6,ISMF™17,
PRIL22|, especially with non-smooth dynamics, i.e. including contact and
collisions.

The fundamental objective in using optimal control methods for biomechan-
ical systems is to find controls, either joint torques or muscle activations, to
perform movement of a musculoskeletal system is such a way as to minimise
or maximise a certain physiological or task-related criterion. The optimal
control formulation used in this thesis extends the work of [Kocl6]. Herein,
optimal control simulations of multibody dynamics was demonstrated for
systems with non-smooth dynamics by using structure preserving integrators.
The time integrator is a derived from a discrete variational principle based on
a discrete action function that approximates the continuous one, as opposed
to the use of standard integration methods, where one would start with
ordinary differential equations and replace the continuous quantities with
discrete approximations. The variational integrators show excellent long term
energy behaviour [MWO01] and enable the use of large time steps [MSL12].
The inclusion of non-smooth dynamics, in particular collisions and contacts,
is done by way of holonomic constraint functions [Kocl6]. In the case of
grasping, we want to model the complete manuever where the hand first moves
to the object and then holds the object and performs a manipulation task.
In the first part, the hand and object systems have dynamics independent of
each other, whereas while performing the manipulation task, the two systems
are in contact. These are represented by two different sets of equations of

49



4 Grasping optimal control setup

motion with known order of events. To execute this manuever, we make
use of the discrete mechanics and optimal control for constrained systems
(DMOCC) approach [LOBMO10], which generates a hybrid dynamical system
with a given switching sequence and unknown switching times. The DMOCC
approach transcribes the infinite dimensional optimal control problem is tran-
scribed into a finite dimensional nonlinear optimisation problem, which is
solved using standard sequential quadratic programming (SQP) or interior
point(IP) algorithms.

The chapter begins with the continuous Lagrangian formulation in Sec-
tion [£I] where we derive the constrained forced Euler-Lagrange equations of
motion from the variational principle. In Section[£.2] we consider the inclusion
of the non-smooth dynamics and give the expressions for the equations of
motion with collisions. Then, we dive into the deep end with the derivation
of the discrete Euler-Lagrange (DEL) equations of motion for each of the
hybrid phase in Section [£:3] This is followed by the description of the grasping
optimal control problem (OCP) in Section Thereafter, we discuss the dis-
crete hybrid dynamical system with the DEL equations of motion, employed
as equality constraints, the additional equality and inequality constraints
and the objective functions that are employed in the OCP in Sections [£4.1]
to respectively. Note that the grasping optimal control problem, the
hybrid dynamical formulation and the objective functions have already been
discussed and published in [PRL22].

4.1 Continuous Lagrangian formulation

We first describe the generic procedure to arrive at the continuous form Euler-
Lagrange equations of motion under conservative forces. This procedure is
described in detail in [Ley08| [BLO6] and repeated here in an abridged version.

We consider the Lagrangian for a mechanical system composed of the
kinetic 7 (g, ¢) and potential V (q) energies as

L£(q,9) =T (q,9) -V (a) (4.1)

where g (t) € R! contains the I-dimensional spatial configuration of the system
and ¢ (t) is its time derivative. The action integral for the system is obtained
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4.1 Continuous Lagrangian formulation

by integrating the Lagrangian over a continuous time interval [to, tn]

M@=/Nﬁ@@w (4.2)

to

Hamilton’s principle states that the action integral is stationary for any
system trajectory, i.e. §5 = 0, i.e., the variation of the action is zero for all
6q with boundary conditions. Using the variational principle, integration by
parts and fixed boundary values dq (to) = dq (tn) = 0, we obtain the second
order Euler-Lagrange equations of motion

OL(q,q) d (85 (a, q)) —o (4.3)
oq dt q

With the director-based multibody formulation, one works with a reduced
system with a constraint vector g (g) = 0 € R™ usually composed of internal
and joint constraints. The set of constraints restricts the configuration q to
a constraint manifold C C @. To include them, the integrand of the action
integral is extended with Lagrange multipliers A (¢t) € R™ as

S@M:/N@mn%gwfaw (4.4)

to

where £ (g,q,\) =L(q,q)—g (q)T~)\ is termed as the augmented Lagrangian.
Using the Hamilton principle S = 0, we arrive at the constrained Euler-
Lagrange equations of motion

9L(q,9) _d (9L(g,9) T _

g(g)=0 (4.5b)

0
where G = 9 () € R™ ! is the constraint Jacobian. The expression

dq
G7T (q) - X can be physically interpreted as the constraint forces. This system
is composed of (I + m) equations. These are used to solve for the [ redundant
configuration variables and m Lagrange multipliers.
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Following this, we consider the influence of non-conservative contributions
such as friction or external loads on the mechanical system. These contri-
butions change the amount of energy and are considered via the Lagrange-
d’Alembert principle which reads

6/NE(q,l'])dt-l—/NéW(q,T)dt:O, (4.6)

to to

with the variation of the work of non-conservative contributions W (q, 7),
also known as non-conservative virtual work. In the context of this thesis,
this refers to the actuation in terms of torques 7 (t) € R'™™ applied to the
joints in a multibody system. The virtual work

Wiq,7)=f(q,7) dq (4.7)

contains the non-conservative external forces f (g, 7). When evaluating the
Lagrange-d’Alembert principle, the external forces appear in the equations of

motion in Equation (4.5a)) as

aq dt

with Equation appearing as before.

The dimension of the system of equations is reduced with the use of two
methods. For every g € C a (I — m)-dimensional tangent space TyC' exists,
the basis vectors of which form a [ x (I — m) matrix P (q) with the linear
map P (q) : R"™™ — T,C. This is called as the null-space matrix as it has
the property

range (P (q)) = null (G (q)) = T4C. (4.9)

Due to this property, we see that the multiplication of the null-space matrix
with the constraint Jacobian yields zero, i.e.,

G(q)-P(q) =0 (4.10)

Pre-multiplying Equation (4.8)) with the transpose of this matrix projects the
equations of motion to the space T4C, and eliminates the constraint Jacobian
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G (q) along with the Lagrangian multipliers A and we obtain the constrained
forced Euler-Lagrange equations of motion

P (g). [acgcgq) B % (aﬁgz,q)> +f(q7T)} o (4.11a)

g(q)=0 (4.11b)

This reduced system now consists of [ equations which is used to solve for the
[ configuration variables. Thereafter, we employ a second method to further
reduce the overall system size. In our description of multibody systems with
holonomic constraints, there exists a possibility to locally parameterise the
constraint manifold, F : U C R'""™ — C through ¢ = F (u) in terms of
generalised coordinates u (t) € R™™™. These fulfil the holonomic constraints
function

g (F(u))=0. (4.12)

With respect to Equation (4.12), the constraints are automatically satisfied
and accordingly the dimension of system of equations in Equation (4.11))
reduced to (I — m)-dimensional equations of motion.

Remark 2 The null space matrixz for a multibody system can be obtained
through the approach of velocity analysis, which uses the relation between con-
figuration velocities ¢ and the independent generalised velocities v (t) € R'™™
as

q=P(q) v

4.2 Collision and grasping dynamics

Following on from the continuous formulation described in the previous
section, we consider the inclusion of collisions or contacts in dynamics of
mechanical systems. In grasping problems, we extend the Euler-Lagrange
equations of motion to handle unilateral contact problems, primarily impacts
and sticking. The grasping motion occurs in two phases, namely the reaching
and manipulation phases, as shown in Figure The first phase begins
with the hand moving towards the object, with a collision at the end to close
the contact and form the grasp. In the second phase, the hand performs a
manipulation maneuver with the contacts closed. To understand the equations
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of motion for these dynamics, we first consider the collision at the end of
the reaching phase, and thereafter extend the concept to closed contacts or
adhesion during the manipulation phase.

d

'@

S phase phase

IS8
I
=}

d=0 O

reaching manipulation

Figure 4.1: The reaching and manipulation phase description in the grasping
problem. In the reaching phase, the finger digit, represented by a ball, moves
toward the object surface S. After the gap d between them becomes zero, the
two move together in the manipulation phase.

We consider the [-dimensional configuration g from Section defined
on configuration manifold @ C R' with velocity ¢ € T4Q in the time span
[to,tn] C R. The configuration is limited to a admissible set C = {q €
Q | g(g(t)) = 0}, due to holonomic constraints. At time ¢x € (fo,tn),
there occurs a collision in the form of a unilateral constraint gc (q) =
0. The admissible set, before and after collision, is further restricted to
Ct ={qe Q|g(gt) = 0, gc > 0}and the boundary 6C™ represents
configurations g (tx) where the non-penetration condition gc > 0 becomes
zero. With the collision constraint, the augmented Lagrangian is expressed as

L(g.q. X ) =L(q,q)—g(@" - XA—gc (@) Ac. (4.13)

Here, A¢ is the impact multiplier or the force associated with the collision
constraint gc (q).

For the purpose of brevity, the derivation of the equations of motion is
avoided here as it is non-trivial and we move to the equations of motion
directly. The reader is referred to [LHKI12] and Chapter 4 in [Kocl6] for the
complete derivation. The equations of motion for such a collision problem for
time ¢ < t; are the same as expressed in Equation . However, at the
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4.3 Derivation of discrete Euler-Lagrange equations

time of collision ¢x the equations of motion take the form

oL d (az

—— (g (tr), q(te)) — at \ 9g

9 )(‘I(tk)»iI(tk)) - G" (q(tr) - A

~GE(q () Ae =0 (4.14a)
g (q(tx)) = 0 (4.14b)
go (q(te)) =0 (4.14c)

Here GE (g (tx)) = %ﬁ;(t’e)) is the collision constraint Jacobian. This is

a (I +m + 1) system of equations, similar to Equation .

The contact constraint used to impose adhesion is similar to the collision
constraint with the difference that the contact constraint is imposed for
the time duration ¢ € (tx, tn] and not just for the instant 5. This leads
us to a similar augmented Lagrangian as Equation , with a similar
set of equations of motion as Equation following the same derivation
procedure.

As in Section the size of the system of equations can be reduced using
the null space matrix and reparameterisation for ¢ < t; and ¢t > t;. For ¢t = ¢y,
the null space matrix can be pre-multiplied to eliminate the constraint force
—G7 (q(tx))-X. However, the reparameterisation described in Equation
cannot be applied due to the additional constraint gc (g (¢x)) = 0 and therefore
alternate strategies are needed to further reduce the number of equations,
which will be dealt with in the following section.

4.3 Derivation of discrete Euler-Lagrange equations

The equations of motion in Sections 1] and -2 have been derived for con-
figuration variable ¢ which is used for describing the hand. For the discrete
setting, we derive the equations of motion for the object as well. The object
configuration is described using q© (t).

The derivation of the discrete equations of motion follow the similar script
of starting the action integral and then utilising the calculus of variations
and integration by parts, however, in a discrete context. We intend to derive
a numerical time-stepping scheme intended to computationally determine
the forward dynamics in the two phases of the grasping problem. In the
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4 Grasping optimal control setup

reaching phase, the equations of motion for the hand and the object are
independent of each other. At the end of the reaching phase, there occurs
a collision between the fingers and the object due to enforced constraints
gci (q,qo, 0, QO) = 0 € R"¢ for n. contact points. These constraints are
also termed as gap functions, as they enforce gap closure and are expressed
using the PwoF contact model constraint from Section [3.1.1} To perform
the required manipulation, the hand and the object are constrained to move
together using contact constraints gco (q, qo) =0 € RP"™¢, where p depends
on the number of constraints used at every contact point. For instance, in
case of hard contact model from Section [3.1.2] we have p = 3, while for the
soft contact model from Section [3:1.3] we have p = 4.

Remark 3 The gap closure constraint gci (q, q°, o, QO) = 0 is denoted in

this derivation as gci (q,qo) = 0, since the contact points o1, 09 are not
time-continuous and can be excluded from the derivation, for brevity.

The discrete Euler-Lagrange (DEL) equations of motion to describe the
hand and object dynamics are derived through a discrete variational principle,
as described in [LMOOS]. This gives a symplectic time stepping scheme with
structure preserving properties. Since the derivation procedure for the hand
and the object systems is similar, except for the configuration vector and the
control torques, we only focus on the procedure for the hand and reproduce
the final equations for the object later on.

In the first part we introduce the discrete approximations for the continuous
forms of the Lagrangian and the constraints. It is followed by introducing
the discrete action and thereafter apply Hamilton’s stationarity principle to
obtain the DEL equations of motion.

In a numerical setting, the time interval ¢t = [to,tn] C R is discretized by
t1 = At,...,t, = nAt,...,txn = NAt with N € N time nodes and At € R
as the time step. The discrete configuration variables qq = {qn}nNzo are
then approximations at these time nodes such as ¢, =~ ¢ (¢»), and other
discrete quantities such as 74 = {7, }0-, ¢ = {aS}), accordingly are
approximated as o, ~ T (tn), ¢S ~ q© (t,) respectively, and so on. We begin
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4.3 Derivation of discrete Euler-Lagrange equations

with the discrete Lagrangian, L4 : Q X Q — R,

tn+1
Lo (Gns Guis) ~ / £(q,q)dt (4.15)
t

n

Ed (q’ﬂ7 qn+1) = At£ (q"+12+ q" ) q"H’lAt q’”)
which is an approximation of the action of the continuous Lagrangian £
in a time internal [t,, tn4+1] through a midpoint rule for the configuration
and finite difference approximation for the velocity. The discrete constraint
function in the similar time interval is approximated version of the constraint
function g (q) and multipliers A, with the trapezoidal rule

tnt1
%gd (@) - An + %gd (@n+1)" - Ansr ~ / g(@)" - Adt (4.16)
tn
wherein g4 (gn) = Atg(gn) and consequently Gq (gn) = AtG (gn) is the
discrete Jacobian and A, & A (t,) is approximation for the discrete multipliers
Ad = {A 1l
Similar to Equation , the discrete approximation of the augmented
Lagrangian becomes

La (Qna An, Qnt1, )\nJrl) =Ly (Qn> Qn+1) -

1
3 (Qg (gn) - An +g§ (gn+1) - )\n+1) (4.17)

Equation represents the dynamics of the hand over the complete
time-span ¢t = [to, tn]. Next, the collision constraints occurring at time ¢
are expressed in their discrete forms using the trapezoidal rule similar to
Equation . They are discretized between the time interval [tx—1,tx+1],
see [LHK12] [Kocl6], as

te — tk—1
2

tkr1 —tk T

91 (qr, at) - Aok + 5 9c1 (ar, %) - Acri &

/ gt (a (), 0° () - Aot (ta)de,

tp—1

(4.18)
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4 Grasping optimal control setup

while the contact constraints are expressed as a continuous sum in the discrete
form for the time interval ( tip41,tn ]

N—-1

A A
> 7’5952 (an,a7) - Aoz + {ggz (@ni1:@%41) - Aoz &
n=k+1

/ " T (a(0).4° () - Aen (1) dt

(4.19)

Here, the contact closure time tj is between tx_1 < t < tgy1 with tx11 —
tr—1 = At. Thereafter, we include the discrete versions of the collision and
contact constraints in the augmented Lagrangian from Equation and
write the discrete action sum S’d over the complete time interval [to,tn]
analogous to the continuous one in Section 2] which reads as

Sa = Sa,1+ Sa2 + Sas (4.20)

with components S'd717 Sd,z and gd,g representing the discrete action for the
reaching phase, collision instant and manipulation phase, respectively. The
individual components are

k—2

S’dvl :Z‘éd (qn7>‘n7qn+17An+1)7 (421)

n=0

te —tk—1

Sao=La(qr—1,Ne—1,qx, Ak) — a1 (qlm QkO) “AC1,k

] L2 (4.22)
+La (@rs Ak Qrt1; Aktr) — %g& (g, ar) - Ao,k
and
N-1
Sa3 = La (Gn; A, @ni1s Any1)

n=k+1

N-1

At At
- (2952 (@n,47) - Acan + ?952 (@ns1,a241) - /\cz,n+1)

n=k+1

(4.23)
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4.3 Derivation of discrete Euler-Lagrange equations

The discrete variational principle for the constrained motion requires that
5S4 = 0 for all possible variations {6gn }0_0, {6a930_ ., {6An}0 0, OAC1k,
{5A02,n},1¥:k+1 with zero variations for the configurations and Lagrange
multipliers at the time boundaries, i.e. dgo = dgn = 0, §¢5 = 0, dXo =
0AN = 0, and dA¢2,nv = 0. Using the calculus of variations, we now write
the variation for each of the actions expressed in Equations to
as follows, starting with 6Sg,1

- t1—t
0841 = [D1£d (g0, q1) — ——G (q0)" )\0} -6qo

2
t1 —t
- 5 29" (g0) - 6Xo
k—1
+ Z |:D2£d (qn—17 qn) + DIEd (Qm qn+1)
n=1
LT R ; fn1 gr (gn) - An| - 0gn
it ;
_ Z %HQT (@n) - 6An, (4.24)
n=1

followed by 65,2 with

6842 = [D2£d (qu—1,q%) + D1La (qk, qr+1)

te+1 — te—1 T
e = el A
5 (gr) - Ak

t — ti_
—%G& () - ACM} Sqn

t — tr—
_ %QT (qr) - 6%
ot =tk

2 g1 - Aok, (4.25)
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and finally with 55'(1,3

N-1

6843 = Z [Dzﬁd (@n—1,9n) + D1La (qn, qn+1) —
n=k+1
tny1 — th—
N—-1 " ¢
_ Z _ [%G& (@n) - Acz.n| - 6an
n=k+1
N—-1 " " ¢ ¢
_ Z %QT (gn) - 6An — %952 - 6Ac2m
n=k+1
tn —tn—
+ [Dzﬁd (gv-1,an) — %GT (@n) - AN
tnN —tn—
_%GEQ (gqn) - Acan| - dgn
tN —tN-1 T tN —tN-1 T
S (gn) - 0AN — — 902 (gn) - 6Ac2,N.  (4.26)

with 65, = 55',1,1 + 5§d,2 + 6§d,3. Here Dy and Ds refer to the differential
operator with respect to the first and second argument of L4, respectively.
The fundamental lemma of the calculus of variations requires that the terms
in the brackets in Equations (4.24]) to (4.26) to equal zero. Applying the
lemma to variation 65’11,1 from Equation ‘ﬂ, we obtain the DEL equations
of motion to describe the forward dynamics for the hand for the time nodes
before the collision n = 1,...,k — 1. They are utilized to compute the
configuration gn+1 from configurations qn,—1, g via

tnt1 — tn—
DQEd (Qn—h qn) + Dlﬁd (qn7 qn+1) - %GT (qn) . An =0
(4.27)

tny1 — tn-1
ot~ gt (g) =0

Similarly, considering 542 for the collision time instant ¢, we get the
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4.3 Derivation of discrete Euler-Lagrange equations

equations,

t — te_
DoLa(qr-1,ar) + D1La (qr, gr1) — =221 GT (qi) - Ar

2
tht1 —th—1 AT _
R S Gei(qr) - Aok =0
N (4.28)
1—tr—1

Bt 107 () =0,

tea1 — te—

%951 (gr) = 0.

Finally, with 55'(1,3, we can write the equations of motion for the manipulation
phase, which occurs fromn=%k+1,..., N —1

bttt — o
D2La (qn-1,4n) + D1La (qn, Gni1) — 2 —""LG" (gn) - An

2
thae1 — tn—
*%ng (Qn) “Ac2n =0
bt — s (4.29)
g (q,) = 0,
tn+1 — tn—
+1flggz (gn) = 0.

As in the continuous case, the size of the system of equations in Equa-
tions to is modified in the following ways. Firstly, the discrete
external force due to the control torques is added. The virtual work described
in Equation is approximated by

tni1
fo (@nm) - 0an + £ (@ni1, 70 ) - 0qnia z/ f-oqdt,  (4.30)
t

n

where f,,, fi7 are named as the left and right discrete forces, respectively and

t
S =T = < T refer to Figure 1 in [LOBMO10]. Furthermore, the discrete

null space P (g,) € R*U~™) is pre-multiplied to eliminate the constraint
forces, as done in the continuous method in Equation . Finally, the
minimal coordinates are also discretized as incremental updates ug = {un}le7
which is used to form a discrete local or nodal reparameterisation g,+1 =
Fy (un+1,gn), such the holonomic constraints g (grn+1) = 0 are fulfilled.
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4 Grasping optimal control setup

With these modifications, the equations of motion from Equation (4.27))
appear as

P"(gn) - [D2La(g0-1,0n) + D1La (qn, Fa (wns1,00)) + £ + 2] =0
(4.31)

to compute the update w,+1. The forces are evaluated as f;7 |, = B (gn)-Tn
and f, = BT (qn) - Tnt1, where B(q) is the transformation matrix, see
[Ley11], Maal4].

For the object, we follow the same principle with £ as the discrete La-
grangian and then following the same procedure to obtain the DEL equations
of motion. These are similarly pre-multiplied by the transposed object discrete
null-space matrix P97 (qg ) Here a nodal reparameterisation is not carried
out and the internal constraints are solved for every time node as well. We
solve the forward dynamics equations

PO (q7) - [D2£d (a7-1,47) + DiLT (a7 4741)] =0 (4.32)
9" (¢711) =0

to solve for the configuration q,?H, given previous time step configurations
g1 and gy,

At the instant of contact closure and the time nodes thereafter, i.e., n =
k,..., N, the open chain dynamics of the hand transforms into a closed loop
system due to inclusion of the holonomic contact constraints. To describe
closed loop dynamics with redundant or natural coordinates, two methods
have been presented in literature, both involving the contact constraint
Jacobian. Firstly, the Jacobian can be eliminated through the use of another
null-space matrix, as done for the kinematic chain constraint Jacobian in
Equation . This method reduces the size of the problem, again, by
eliminating the Lagrange multipliers required for the contact constraints. This
matrix can be either analytically described for a closed kinematic chain, e.g.
see [BLO6], or can be evaluated using the QR decomposition, as described
in [Maal4l [KocI6]. The former method is contact configuration dependent
and not modular, while the latter involves a numerical method which is
computationally expensive and for which a derivative cannot be efficiently
written. In both methods, the Lagrange multipliers for the contact constraints
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4.3 Derivation of discrete Euler-Lagrange equations

have to be recalculated to be used in the frictional constraints, which is an
additional computational cost.

The second method is to not eliminate the contact constraint Jacobian
in the equations of motion as in [dJB94]. This increases the problem size.
However, it avoids all the extra computations and keeps the structure modular.
The omission of nodal reparameterisation for the object further preserves
the modularity to keep the form of the system of equations independent of
the number of the contact points, and the digits which perform the contact
closure. Keeping this in mind, we write the closed loop dynamics discrete
equations of motion for the hand and object as

P" (gn)- [DZLd (@n—1,qn) + D1La (qn, Fa (unt1,qn)) + fi 1 + fr
_Gg (q’ﬂ?qr?) . Ac,n} =
PO (g7) - [D2£F (a-1.a%) + D1LT (a) . s

,G(C)’T (qn, qn) - g, n} =0
g (%) = 0
gc (qn+17 qn+1) 0.

(4.33)

The DEL equations of motion can be written either by using the bracket terms
in Equation or Equation along with the corresponding equations
for the object dynamics. Equation is generic for both gap closure or
contact constraints between two systems. This means that gc (qn+1, q,?+1)
can be chosen to be either gc1 (an,q,?_H) or gc2 (qn+17q7?+1), with the
corresponding constraint Jacobian, and the equations look the same. Both
systems are pre-multiplied with their respective null-space matrices and the
hand actuation through the redundant force is also considered.

Equation solves for hand and object configurations, namely w,t1
and qT?H respectively, using their respective configurations at the previous
two time nodes, as well as the Lagrange multipliers to calculate the contact
force Ac,n. Using Equations to , we now move to the description
of the optimal control problem for the reaching and manipulation phases in
the following sections.
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4 Grasping optimal control setup

4.4 Grasping optimal control problem

The time-continuous optimal control problem (OCP) for mechanical systems
has been exhaustively discussed in a number of publications and theses,
such as [LHK12l [OBO08| [Flal3l [Maaldl [Kocl6l [Schl8] to name a few. We
describe it here in brief for the sake of completeness. Consider a dynamical
system described through i (¢) = f (z (t),u (¢)) with state x, control u and
continuously differentiable f. For the system to be steered from an initial
state zo to a final one a time interval ¢ € [0,7], with path constraints
h(z(t),u(t)) > 0, an optimal control problem can be formulated as

J(az,u):/ C(z(t),u(t))dt
subject to @ (t) (x (t),u(t)) (4.34)
(0)

0

min
z(-),u(-),T

f
Zo
h

IA

(z (1), u(t))

where J is a given objective functional with continuously differentiable function
C'. The time interval T' may be either fixed or appear as a degree of freedom
in the optimisation problem.

The numerical simulation of OCP is performed here with the direct approach
[OB08, [LHK12], which transcribes the infinite dimensional optimal control
problem into a finite dimensional nonlinear programming problem, see [Bet98|
Str98]. The OCP has defined numbers of time nodes, namely Nj and Ny,
for the reaching and grasping phases, respectively, with N = Ny + N,,. The
discrete unknowns used in the OCP are the trajectories ug,qS for the hand
and object, respectively, along with control actuation torques 74 for the hand,
as introduced in Section

Furthermore the Lagrangian multipliers to describe the contact forces
Ac,d = {)\c,n}f:f:Nk and the contact points vector g € R*™ on the finger
digits are included as optimisation variables. The vector g consists of the n.
contact point locations {91}1:172,3. The contact points on the object are not
a part of the optimisation variables, as they are calculated according to the
reformulation in Equation . For a contact point @* on the hand, the
counterpart on the object (with coefficients {09} 7=1,23) at the instant of
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4.4 Grasping optimal control problem

contact closure is calculated through

{09 o102 = [dY, d, dF]" - (¢" + 0" — 7).,

with the quantities on the right hand side as optimisation variables. Finally,
the optimal durations T}, T;, for the reaching and grasping phases are part
of the optimisation variables. We define a discrete objective function

N-1

Jd (udde7qdo7)\C,d7 o, TkaT’m) = ZBCI (un7un+177-n7qgaq'r?+17)‘c,n7 o, TkHTm)
n=0

(4.35)
as a sum of a scalar-valued cost function By, which has to be minimised
subject to equality and inequality constraints. As it is the case in nonlinear
constrained optimisation, the objective and constraints equations have to be
twice continuously differentiable to ensure feasibility in obtaining a solution.
The following subsections describe the constraints used in the grasping OCP,
in particular the DEL equations of motion describing the grasping dynamics.

4.4.1 Hybrid dynamical system

The hybrid formulation, with the varying equality and inequality constraints
imposed at the different time nodes, is illustrated in Fig. [£2] These are
described along with the DEL equations of motion listed below, which are
included in the OCP as equality constraints.
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4.4 Grasping optimal control problem

At node n = 0 or time ¢t = 0, the positions for the hand qo, through uo, and
the object g are constrained with respect to prescribed configurations qoo
and g$), respectively. Additionally, we apply the discrete Legendre transform,
see [LOBMOI0], to constrain their initial momenta with prescribed values po
and p§ for the hand and the object, respectively,

P (qo) - [po + D1La(qo, Fa(u1,q0)) + fi | =0
PO7 (¢§) - [p§ + D:1 £ (¢5,a7)] =0
9" (a’) =0
The reaching phase extends in the time frame |To, Tk [, i.e. from time

nodes n = 1,--- , N — 2. The discrete open chain dynamics follow from

Equations (4.31)) and (4.32)). The gap closure functions gc1 are imposed as
inequality constraints to ensure non-penetration between fingers and object
surfaces

P" (qn) - [D2La(gn-1,n) + D1La (qn, Fa (wns1,00)) + Fo-y + fr |
POT (g7)  [D2£F (a7-1.a7) + D1LT (a7, a041)] =

g™ (qn+1)
) >

gci (Qn+1, dn+1

0
0
0

The reaching phase concludes at time 7%, or node n = N, using Equa-

tion (3.9), (3.10) and (3.11) to determine configurations gy, through u; and
qS. At this time instant, the contact points on the hand and the object are

closed. They will stay fixed for the remainder of the manipulation phase in
respective body frames

P (k1) [D2La(qr—2,qk—1) + D1 La (qr—1, Fa (wr, qr—1)) +
fio+ fia]

POt ( ) [DQEd (QkO—za%Oq) + D1 L7 (qg—hqg” =

g™ (av)

gci (QIkaO) =

For the next time node, n = Ni + 1, the corresponding contact forces are
included in the DEL Equations (4.33]) with Lagrange multipliers Ac1. The
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4 Grasping optimal control setup

contact forces, hereafter, are constrained to be pressing on the object, while
observing the Coulomb’s law for static friction.

P" (qx) - [D2La (qr-1,qx) + D1La (g, Fa (wri1, qr)) + £ii 1 + fi
~Gé (qr) )\01]
PO’T( ) [D2£d ( Q- 1,(1k) +DiLF (Qk 7Qk+1)
—G&{ (a7) - Aen] =
mt (Qk+1)
gce (Qk+1,%+1) =0

Hereon, the manipulation phase is executed in the |Tx, T [, for time nodes
n = Ng,---,N —1. The DEL equations are appended with spherical joint
contact constraints gce and forces, with Lagrange multipliers Ac2. The
contact forces are now represented by the gradient of the spherical joint
constraints.

P (gn) - [D2La(gn-1,9n) + D1La (qn, Fa (Wns1,qn)) + Fri + fur
—Gcz (@) - Ac2 n}

PO (g7) - [D2£F (a7-1.a) + D1LT (a5, ans1)

~Geoy' (qn) Ac2n]

(g7+1)

gcz (Qm an )

znt

0
0
0

At final time T, the configuration ¢% is bounded. The momenta py and p%
for the hand and the object, respectively, are prescribed and the Legendre
transform is again utilised

P" (qn) - [Py — D2La(qn-1, Fa(un,qn-1)) + £ — Ga (qn) - Aoa,n | =0
POT (qR) - [pX — D2LF (qR-1.4%) — G2 (aN) - Acan] =0
goz (qN7QN) 0

In the following subsection we describe the supplementary path constraints,
inequality and equality, used in the OCP.
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4.4 Grasping optimal control problem

4.4.2 Additional path constraints

The DEL equations of motion prescribe the primary constraints in the non-
linear optimisation problem. They are supplanted with constraints on other
parameters to perform a particular grasp in the most possible human-like
way. We use linear bounds on the optimisation variables that are supplied to
the optimiser in the form of upper and lower limits. We also need non-linear
bounds that are provided as constraints for quantities such as normal forces
or contact angles between the fingers and the object. Following is the list of
inequality and equality constraints that are used in this work.

4.4.2.1 Inequality constraints

In addition to the normal force Rpormai (Equation (3.14))) and frictional force

h¢ric constraints, for the hard (Equation (3.17)) and soft (Equation (3.20)))
contact models, as shown in Figure [£1] we introduce the following inequality
constraints.

Joint angle limits The joint angles between the fingers have limits on them
due to anatomical constraints such as skin or tendon length limits. For every
degree of freedom, there exists an upper and a lower bound, with respect to a
particular initial resting position. The joint angles in the director formulation
are calculated through the use of relative rotation matrix R"* = (R“)T -R?
for successive bodies a,b, where R = [ di, di, d};] for t = {a,b}. The
matrix R®® is used to calculate the roll, pitch and yaw, or Cardan angles with
the order XYZ, or flexion/extension (aba), adduction/abduction (ﬁb“) or

pronation/supination (’yb“)7 through

ba
ba __ -1 R23
o = tan ——a
R33
ba
Ris5

VRS + R3S

" B Rba
+* = tan 1(_ ;g)
Rll

B = tan™! (4.36)
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A particular constraint for an angle, say a® is applied via

aba _ gupper

h;(q) := <o, (4.37)

lower ba -
0 —a

for its respective upper "PP°" and lower §'°°" limits. For the interphalangeal
joints with one degree of freedom, we have °* = 0 and +** = 0. For the
metacarpal joints with two degrees of freedom, the order flexion/extension
followed by adduction/abduction is consistent with the joint modelling and
we again have v°® = 0. The joint angle limits are imposed for all time steps.

Surface limits S and S for contact points The contact points g and o
are constrained to lie on specified areas on the finger and object surfaces,
respectively, as introduced in Section[3.3] Since g is chosen as an optimisation
variable, the linear bounds are supplied directly to the optimiser. Since
0% are calculated within the optimisation problem, the bounds are applied
non-linearly through the relations from Section [3-4].

Contact point normal angle It is possible to position the thumb and index
or middle finger using the normals at the contact points to achieve a proper
opposition posture while performing grasping. The normal to the digit
cylindrical surface at contact point g, is calculated as

n—= o(1)d, jﬂ' 9(2)d2’ (4.38)

where directors di, d2 describe the cylindrical cross-section of the digit and r
is its radius. For thumb and index finger normals n’ and n’, the constraint
is written as

hn (gx, 0) == (nt)T -n? —cos (Bnormat) <0 (4.39)

to have an angle of at least 6,,0rmai between them. The angle value is chosen
as per a particular grasp.
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4.4 Grasping optimal control problem

Contact point tangential angle The angle between the normals to the finger
digit and the object surfaces at the contact point can be constrained to serve
two purposes, firstly to achieve a good grasp posture and secondly to reduce
penetration between the two surfaces. While the normal to the finger digit
is calculated through Equation @7 while the normal for different object
surfaces is detailed in Section d For normals n/ and n©, the constraint to
have an angle fiang between them is given as

h: (gx, 0) = (nf)T n° —cos (Orang) < 0 (4.40)

Contact points height This is an additional constraint useful for grasping
cylindrical objects, wherein the contact point coordinates along the cylindrical
axis are to be within a certain distance of each other to reduce moments
occurring due to the normal forces applied by the finger digits. The distance
between contact points (QO) * and (QO) ! is constrained to be within a distance
dheight as

Rheignt (qr) = ((Qo)t (3)— (Qo)f (3)>2 - dlzv.eight <0 (4.41)

Object manipulation constraints In addition to the absolute bounds used to
guide the movement of the object in the manipulation phase, it is sometimes
helpful to use the object configurations at two different, mostly successive,
time nodes to describe specific instructions to drive the object motion. This
constraint is highly grasp specific and can be expressed in different ways
possible.

Bmani (g7) <0 (4.42)

4.4.2.2 Equality constraints

The primary equality constraints in the grasping OCP are the DEL equations
of motion listed in Section [£4.1] and depicted in Figure {1} including the
initial and final momenta. These are supplemented with the following equality
constraints.
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4 Grasping optimal control setup

Object fix constraints In the reaching phase, as the hand approaches the
object, the latter is fixed to the ground with respect to its initial configuration
q%;. This is done through the following constraint

o @)
dn,1 — Qini1

117?,2 - qioni,Q
fe) o

o qn,3 — 4dini,3 6

gr(@)=| 72" "© —0cR° (4.43)

qn,4 - Qini,ll

q'r?,7 - qioni,7

o o
19dn,10 — Dini, 10|

for n = 1,..., Nr. The coordinates {qiom’l}le,g,g refers to the location of
the object, while each of the value {qio,”7[}1:4,7,10 refers to the each of the
director. These constraints along with the internal constraints describe the
complete configuration of the object for the reaching phase. This constraint
vector also causes a force, evaluated as fy = —G? - Ay, where Gy is the
constant Jacobian and Ay € R® is the corresponding Lagrange multiplier.
The constraint force is included in the object DEL equations of motion in the
hybrid dynamical system.

Surface limits S and S© for contact points These constraints have been
introduced in Section to fix the local coordinates for the contact points
on the finger surface from Equation . For the object, the equality
constraint forms the contact gap closure function, which has been covered in
Equation (3.10)), with examples for box in Equation and a cylinder in
Equation (3.35)).

Finger interphalangeal constraints For the index finger, the flexion motion
of the proximal and distal interphalangeal joints (PIP and DIP, respectively)
is related through the following equation

2
g9 =0prp — §9PIP =0 (4.44)

This results from the underlying tendon structure for flexion and extension

72



4.4 Grasping optimal control problem

Oprp

Oprp

Figure 4.3: The angles for the proximal (fp;p) and distal (fprp) interpha-
langeal joints in the index finger.

finger movements and makes the hand motion in the reaching phase realistic.
The calculation of joint angles is done by evaluating the Euler angles, as done
for the inequality constraints. The constraint is imposed differently for the
fingers which are used to perform the grasp, and those which are not. For
the non-grasp fingers, the constraint is imposed for all time steps. For the
fingers which perform object manipulation, the constraint is imposed only
for reaching phase, to allow in-hand object manipulation, depending on the
grasp type and maneuver.

Object manipulation constraints Similar to the constraints of the same name
as described in Section [£4:2.1] object manipulation can be guided through
the use of equality constraints. The constraint formulation is grasp specific,
and can be generically described as

gmani (qg) =0 (445)

4.4.3 Objective Functions

The primary goal in optimal grasping is to perform force closure grasps with
a viable hand configuration while performing a cognitive task. This requires
optimal contact locations on the hand and the object to manipulate the
object with stability and dexterity. This motivation can be exercised either
in the synthesis or evaluation stage for a particular grasp. The methods
to evaluate the ‘goodness’ of a grasp through quality measures has been
introduced in Section[3.2] The two indices explained in the section therein are
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4 Grasping optimal control setup

from an exhaustive list, compiled in [RS14], through a number of objectives
encompassing different concepts. These include measures based on the position
of contact points, on limitations of finger forces, and on the configuration
of the hand. However, quite a few suitable functions are not fit to be
used as objectives in the optimal control setting. For example, the grasp
isotropy and uniformity of transformation indices are evaluated through the
singular value decomposition of matrices which are done algorithmically in
numerical computations and are not twice continuously differentiable. Hence,
the chances of obtaining a solution from the view of nonlinear constrained
optimisation with these objectives range from very low feasibility to near
infeasibility. Additionally, many of the measures are either derivatives of
each other or inter-dependent, the results of which have been illustrated
in [LSBJB™ 12, [LMSB14]. With such considerations, the following list of
objective functions is presented which are suitable in our grasping optimal
control environment.

Unity function (Jo) The grasping nonlinear optimisation problem is solved
for feasibility with an objective value of 1. The solution is termed as feasible
as it satisfies the nonlinear constraints and works as an initial guess for the
subsequent nonlinear objectives.

Jo=1 (4.46)

Grasp contact polygon centroid (J:) This kinematic objective is based
on the location of the contact points on the object. The possibilities for
utilising these are either through the algebraic properties, i.e., using the
grasp matrix [LS88] or use their distribution on the object, see [LRSBMI14].
These include either the area [MC94, [CFMPO03], shape [PS92 [KOYS01] or the
centroid [DLWOIL [CMEdPO5] of the contact polygon. While all three achieves
a good spread of the contact points around the object, thereby ensuring
an even distribution of the contact forces, the computation of centroid is
easier compared to the area or shape. Here, we calculate the centroid of the
contact points at the time of closure, through @“"* = i :L:Cl (cpb + gf)
This objective minimises the distance between the object centre of mass cpo
and @°“".

1 cen
Ji=Slle*" = @O (4.47)
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4.4 Grasping optimal control problem

Rate of change of control torques (J2) The objectives based on controls, ki-
netic energy, jerk, joint reaction or time are normally termed as physiologically
motivated objectives. As opposed to the other mentioned quantities, the use
of controls in minimisation is relatively easier with examples demonstrated for
voltage [PSL17], control torques [Kocl6), [Ley08, IMLI3| or muscle activations
[Maaldl IDBFT20]. The objective used here minimises the changes in the
control torques to ensure a smooth movement of the fingers for the complete
simulation duration. This is a form of objective from quantities concerning

the hand.
N-—-2 2
7 (tnsr —ta) [ (4.48)
p— 2Sn-ﬂ—l - tn

The forearm torque values are relatively higher compared to the other joints,
on account of the high moment arm used for its movements. Therefore, they
are excluded in the evaluation of this objective.

Jo =

N =

Normal contact force (J3) The use of contact forces is a physiological objec-
tive related to the grasping framework. Referring to the list of quality measures
in [RS14], contact forces have found applications in [Pol04] [LXWT.04], wherein
the inverse of the sum of magnitudes of normal components of applied forces
is considered as a quality measure. This is an indication of the force efficiency
of the grasp with a higher value signifying better quality. Contrary to this,
it is required in some cases, especially with precision grasps, to perform a
manipulation task with minimum force possible. The normal contact force
fin,c on the object at contact point 0% is evaluated through the relation
in Equation . Provided the force closure is maintained through the
friction force constraint, as expressed in Equation or , we define
an objective to minimise the contact forces

N Ne
=5 30> fhe (@A) (4.49)

n=Nj c=1

Comfortable joint flexion (Js) This objective concerns the posture of the
finger joints, in a way that they are as much away from their extreme positions
as possible. Such an index quantifies the comfortableness of the grasp pose,
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4 Grasping optimal control setup

see [Lie77, [RS14], and is evaluated as

l

—m—4 2
1 0; — 0o.;
i=1

max,i emin,i

Here, 6; and 0y ; are the actual and mean joint angle positions for joint ¢,
while 0pqz,s and Opin,; are the maximum and minimum joint angle limits,
respectively. This objective is evaluated at the contact closure time node for
joint angles excluding the forearm and the wrist.

4.5 Summary

The numerical formulation for the grasping OCP as a hybrid dynamical
system with non-smooth dynamics has been developed. The DEL equations
of motion in the reaching and manipulation phases of the hybrid system
have structure preserving properties due to their derivation using the discrete
variational principle. The method to formulate the DEL equations of motion
for the kinematic closed loop system during the manipulation phase gives
the OCP the required modularity to model grasps with different number of
contact points with different configurations. Along with the DEL equations of
motion, the OCP is composed of additional equality and inequality constraints
with describing the contact point locations, the relative orientation of the
finger joints and the orientation of the finger digits during contact closure,
the finger joint limits and equations that may be used to guide the object
configuration during the manipulation phase. The final part of the chapter
discusses three grasp-based and one physiological objective function, two of
which are kinematic in nature and two are dynamic. These objectives will
be utilized to perform the nonlinear optimisation in the following chapter to
simulate grasping actions for three different grasp types.
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5 Grasping optimal control simulations

Following on from the formulation for the grasping optimal control problem
(OCP) in the previous chapter, we present here the results for four grasping
simulations. These include three precision grasps, namely the tip pinch, the
lateral pinch and the palmar pinch, see [FRST16|. The tip pinch grasp, see
Fig. (a), holds thin cylindrical objects such as a toothpick. This grasp is
performed with two contact points for the distal phalanges of the two fingers,
see Fig. (d). The lateral pinch grasp, see Fig. (b), holds thin objects
with flat faces such as a key or a credit card. This is simulated with two
contact points on the index finger medial phalanx and one contact point
on the thumb distal phalanx, see Fig. (e). The palmar pinch grasp, see
Fig.[5.1] (c), holds thin or thick objects such as a credit card, a dice or a ball.
This is simulated with two contact points each on the index finger and the
thumb distal phalanges, see Fig. [5.1] (f).

Since the tip pinch is simulated with two contact points, with hard contacts
it is not fully constrained as explained in Section [3:2.1] We simulate it twice,
each with a hard and soft contact model which sets up a basis for comparison
between the two contact models. The other two grasps are simulated only with
the hard contact model. Each grasping simulation is a rest-to-rest maneuvers
with prescribed initial and final configurations, while minimising each of the
four objective functions introduced in Section [f:4:3] The results for each grasp
are compared with respect to the final objective function values, the location
of the contact points on the fingers and the object, the control torques, the
contact forces, the reaching and manipulation phase durations as well as the
grasp quality measures. Partial results presented in this chapter have been
published in [PRL22].

In Section [5.1] we introduce the simulation parameters for the different
grasps, followed by the results for the tip pinch simulation for hard contact
(Section and soft contact models (Section 7 lateral pinch (Section
and palmar pinch (Section . Section discusses the conclusions.
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5 Grasping optimal control simulations

(d)

Figure 5.1: The tip, lateral and palmar pinch postures (a) — (c) as taken
from [FRST16] and configurations for the simulation with contact points ((¢)
for the thumb and (O) for the index finger) defined on the fingers for the
corresponding grasps (d) — (f). The shaded areas are the limits of the surface
areas for the contact points on the different finger digits.

5.1 Simulation parameters

The computational solution of the nonlinear programming is done in MATLAB,
using the function fmincon()El with the sequential quadratic programming
(SQP) algorithm to perform the constrained non-linear optimisation. The
derivatives for the objectives and constraints are user-written. The bounds on
the control torques are taken from the values provided in [NLI5]. The bounds
on the finger joint angles is realised through nonlinear inequality constraints.
A solution is said to be converged with constraint and first-order optimality
tolerances of 1le™® and le™*, respectively.

 https://www.mathworks.com/help/optim/ug/fmincon.html
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5.1 Simulation parameters

First a feasible solution is determined by running the optimisation problem
with the unity objective in Equation[£:46] Its solution X, satisfies the equality
and inequality constraints, explained in Sections and and is then
used as the initial guess to the different objectives, so as to maintain parity
among the optimal solutions obtained. This serves a good basis for comparison
among solutions of the OCP with different objectives. As a remark, we must
mention that the minima obtained are local, and not global. The information
about the different problem sizes is detailed in Table[5.1] The coeflicient of
static friction for the Coulomb force constraint is p = 0.7 [SLZ08]. The initial
positions for the hand and object are specified through constraints. The
simulation is performed as a rest-to-rest manoeuvre while the final position
of object is specified through bounds. The initial value for the reaching and
grasping phase durations is 0.1 seconds with 0.01 and 0.5 seconds as lower
and upper bounds, respectively. This value is physically very less compared
to actual human grasping duration. However, on the one hand, a higher phase
duration would require a large number of time steps, which would make the
problem computationally extremely challenging. On the other hand, a higher
time with the same number of steps will lead to time step duration of the
order of 0.1 s, which is quite high for a numerical integrator.

Table 5.1: The table provides the information about the problem size for the
optimisation to perform tip, lateral and palmar pinch simulations, with n.
contact points. It details the values for the time steps for the reaching Ny
and manipulation N, phases and the number of optimisation variables X,
inequality ¢, and equality ceq constraints.

grasp ne | Ni | N | size (X) | size (¢) | size (ceq)
tip pinch hard contact | 2 7 15 965 694 751
tip pinch soft contact 2 7 15 979 694 765
lateral pinch 3 5 12 779 526 642
palmar pinch 4 6 15 1013 618 813

The results are elaborated for the different grasps with respect to the
location of contact points on the digits and the objects, the time evolution for
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5 Grasping optimal control simulations

control torques and the contact forces. The torque profiles are illustrated for
the finger MCP and thumb CMC joints, for brevity. The optimal solutions
of the different objectives are denoted as X1, X2, X3, X4 for minimising the
objectives Ji, J2, J3, Ju, respectively. The function values for the different so-
lutions are compared with each other across all objectives, with J; ; = J; (X;),
where i = 1,...,4, represents the objectives and j = 0,...,4, correspond to
the initial guess, Jo = 1, and optimal solutions. The results are tabulated for
every grasp. The values for the grasp quality measures for different solutions
are also compared.

5.2 Tip pinch hard contact model

For the tip pinch grasp, the goal is to hold the curved surface of a thin
cylindrical object and raise it to a predefined height, as shown in Figure [5.2
for the feasible initial guess Xo. This simulation is carried out using the hard
contact model for the manipulation phase.

n= n=11

Figure 5.2: Snapshots tip pinch grasping maneuver with hard contacts at
different time nodes. Two configurations at different time nodes are superim-
posed in each of the three pictures. The hand starts from an open posture at
n = 1 with grasp closure obtained at n = Ny = 7. Thereafter, a lifting task
is performed with postures shown for time nodes n = 11, 22.

The function values J;; for the different objectives and solutions are
provided in Table [5.2] It is clear that a local minimum has been obtained
for every objective, for example comparing J1 1 = 6.21e"® m? while J, o =
1.39¢72 m? or Ji2 = 3.2¢™* m? for objective Ji, or comparing Joo =
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5.2 Tip pinch hard contact model

167.6 N2m2sfl, with Jo o = 4068 N2m2s™! or Joz = 4134 N2m?s~! for
objective Jo. Apart from the optimal solutions J; ;, the function values for
other optimal solutions, J; ; with ¢ # j, are close to that of the respective
initial guess J;,0, suggesting that the behaviour of the objectives is nearly
independent.

Table 5.2: The table shows the evaluation of the different objective functions
at the different optimal solutions J; ; while performing tip pinch grasp with
hard contacts.

objective solution X X, X, X5 X,
Ji 1.39¢7% | 6.21¢ 7% | 3.20e™* | 1.03¢™® | 1.82¢7°
Jo 4.06¢* | 3.99¢° 1.67¢* | 4.13¢% | 3.81¢3
Js 5.08 2.42 2.69 1.17e7 | 3.98
Ja 8.75¢7* | 6.81e™* | 5.69e7* | 8.5e7* | 1.27¢ ¢

Objective J;

We compare the contact point locations for the different solutions in Fig-
ure The contact points on the object are closer to its centroid for solution
X1, than for the initial guess Xo. The contact points for the other solutions
are nearly the same as in the initial guess. This is similar for the contact
points on the digits. For X7, the finger contact points are near the distal end
of the digits, while for the other solutions, the grasp is closed with points on
the finger pulp.

Objective J2

Here, we compare the torque profiles, as shown in Figure [5.4] We observe
two contributions for the minimise torque change objective J> through the
solution X». Primarily, the magnitude of torque and torque changes are
substantially reduced compared to the other solutions, which follow the
profile from the initial guess Xo. Secondly, the time taken for the two phases
is higher for X7 compared to the other objectives, as can be seen in Table
B3l

Objectives Js and Jy
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5 Grasping optimal control simulations

d 4

Figure 5.3: Location of the contact points on the finger digits and the object

for the different solutions for tip pinch grasp with hard contacts, along with
the initial guess.

Table 5.3: The table provides the phase durations in seconds for the different
objectives while performing tip pinch grasp with hard contacts.

solution X,

time X1 Xz Xs Xa

reaching phase 0.0247 | 0.0264 | 0.0816 | 0.0248 | 0.0271
manipulation phase | 0.0579 | 0.0580 | 0.0754 | 0.0565 | 0.0636

Following on, we compare the contact force for the different objectives.
The solution X3, shows a remarkable decrease in the contact force, while
the other solutions follow the time-profile from the initial guess, as shown
in Figure 5.5} The quality measures for all solutions is computed as a post-
processing quantity, i.e. not minimised, and is summarised in Table [5.4] We
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Figure 5.4: Time evolution of the control torques for the different solutions
while performing tip pinch grasp with hard contacts, for the thumb CMC
joint TEMC (top-left), 75°MC (top-right) and the finger MCP joint 74¢F

(bottom-left), 757¢F (bottom-right).

first discuss the grasp isotropy index (1. The values for the different solutions
have not improved compared to the initial guess Xo. For the uniformity
of transformation index @2, we see that all the objectives have caused a
reduction in the quality value. Even for X4, where Q2 (X4) = 0.0626 and
is believed to increase hand control as the finger joints are in their most
comfortable position, we do not observe an increase, when compared to the
initial guess Q2 (Xo) = 0.0687. It suggests that a comfortable hand posture
does not imply efficient transfer of torques to the contact points. The lowest
value is observed for X3, i.e. while performing the grasp with minimum
contact force. This follows the fact that the force input to object is fairly
detached from the torque applied in the finger joints, as can be confirmed by

the plots in Figs. [5-4 and [5.5]
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Figure 5.5: Time evolution for the contact forces applied by the finger digits,
thumb (left) and index finger (right) on the object for different objectives
while performing tip pinch grasp with hard contacts.

Table 5.4: The table shows the grasp quality measures for the different
objectives while performing tip pinch grasp.

solution
quality Xo X1 X> Xs X4
Q1 0.0031 | 0.0031 | 0.0031 | 0.0031 | 0.0031
Q2 0.0687 | 0.0620 | 0.0645 | 0.0557 | 0.0626

5.3 Tip pinch soft contact model

The simulations in this section are performed with the exact same parameters
as Section [5.2] except for the fact that the soft contact model is used between
the fingers and the cylinder during the manipulation phase. The analysis here
would be to compare the results between the different objectives, along with
the results from the grasp maneuver with the hard contact model. [5.6] for the
feasible initial guess Xo for the lifting action.

The function values J;; for the different objectives and solutions are
provided in Table [5.5] The values here again indicate a fair amount of
independence in that the J; ; is lower for every objective compared to the initial
guess, however for solution X5 and X4, we observe that J; o = 2.35¢"°m? and
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5.3 Tip pinch soft contact model

Figure 5.6: Snapshots tip pinch grasping maneuver with soft contacts at differ-
ent time nodes. Two configurations at different time nodes are superimposed
in each of the three pictures. The hand starts from an open posture at n =1
with grasp closure obtained at n = N, = 7. Thereafter, a lifting task is
performed with postures shown for time nodes n = 11, 22.

Jia= 1.71e " %m? are lower that the minima value obtained by minimising Ji,
which is J11 = 2.73¢75m?. This anomaly can be either due to the possibility
that the optimiser did not either search for a lower minima with .Ji, or that
with the additional contact constraint the optimiser found the contact points
on the object closer to its centroid as a by-product for Xo and Xj.

Table 5.5: The table shows the evaluation of the different objective functions
at the different optimal solutions J; ; while performing tip pinch grasp with
soft contacts.

objective solution Xo X1 X2 Xs X4
Ji 6.04e7° | 2.73¢7° | 2.35¢ 7 | 6.73¢75 | 1.71le "
J2 1.14¢* 1.15¢* 8.43 1.13¢* | 2.43¢*
Ja 2.26 2.24 2.69 | 5.53¢ 1 | 4.56e
Ja 6.17 6.36 5.78 6.06 | 4.81¢?
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5 Grasping optimal control simulations

Objective J;

The contact point locations for the different solutions are shown in Figure
As observed from the values in Table [5.5] for row .J1, the contact points for all
but X3 have moved closer to the centroid. However, only from solution X,
we see that the contact points on the fingers have moved with respect to the
initial guess. With this movement of the contact points, the optimiser was
able to arrive at the minima for J;.

X4

4 ,

Figure 5.7: Location of the contact points on the finger digits and the object
for the different solutions for tip pinch with soft contacts, along with the
initial guess.

Objective Js

Here, we compare the torque profiles, as shown in Figure[5.8] The decrease
in torque magnitudes and increase in phase durations (Table for solution
Xo with respect to the other objectives is a similar observation that can
be made when compared with Figure [5.4] However, we see that torque
values for solution X4 is at least twice compared to the initial guess. This
is also seen with the objective value Js 4 = 2430 N%?m? s ! compared to

86



5.3 Tip pinch soft contact model

Jo,0 = 1140 N2m?s~!. This may indicate that the objective Js generates
disturbed and noisy trajectories with the soft contact model and is perhaps

unsuitable in this example.
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Figure 5.8: Time evolution of the control torques for the different solutions
while performing tip pinch grasp with soft contacts, for the thumb CMC
joint 7CME (top-left), 75 MC (top-right) and the finger MCP joint m{*¢F

(bottom-left),

TQ]WCP

(bottom-right).

Table 5.6: The table provides the phase durations in seconds for the different
objectives while performing tip pinch grasp with soft contacts.

time solution X, X, X, X5 X,
reaching phase 0.0142 | 0.0146 | 0.1163 | 0.0142 | 0.0345
manipulation phase | 0.0302 | 0.0304 | 0.1160 | 0.0308 | 0.0474
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Figure 5.9: Time evolution for the contact forces applied by the finger digits,
thumb (left) and index finger (right) on the object for different objectives
while performing tip pinch grasp with soft contacts.

Objectives Js and Jy

Next, we compare the contact force for the different objectives through the
profiles in Figure Similar to the observation in Figure the solution
X3 shows a remarkable decrease in the contact force profile. However, we
observe that the contact forces have increased by an order of 2 for the X4
solution with respect to the initial guess X¢ complementary to the torque
profiles. This further cements the idea that a comfortable hand posture may
not be the ideal objective while simulating grasps with the soft contact model.
Additionally, we also see that the force profile for solution X5 is also higher,
though not as significantly as X4.

The quality measures for all solutions is summarised in Table For
the grasp isotropy index 1, the values for the different solutions have not
improved either when compared to the initial guess X or even with respect
to the values in Table [5.4] This indicates that the contact model, whether
hard or soft, either does not improve the grasp stability, or perhaps a more
complex measure must be used to judge the improvement due to the use of a
more complex contact model, provided there is any improvement. The value
uniformity of transformation index @2, however, show a marked decrease
with the soft contact model, when compared with the values for the hard one.
This implies that the overall control is reduced when a contact model with
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more friction is used for grasping simulation. Parenthetically, we see that the
Q2 value for solution X4 has improved compared to X¢ and the lowest value
is observed for X3, as seen in the hard contact example.

Table 5.7: The table shows the grasp quality measures for the different
objectives while performing tip pinch grasp with soft contacts.

solution
quality Xo X1 X2 X3 Xa
Q1 0.0031 | 0.0031 | 0.0029 | 0.0031 | 0.0031
Q2 0.0117 | 0.0118 | 0.0117 | 0.0116 | 0.0133

5.4 Lateral pinch

In the lateral pinch grasp, the object is modelled as a key, whose square
surfaces are grasped, lifted to a particular height and then a small twist is
applied to perform a turning motion, as shown in Figure [5.10]

Figure 5.10: Snapshots of the lateral pinch grasping maneuver at different
time nodes. Two configurations at different time nodes are superimposed in
each of the three pictures. The hand starts from an open posture at n = 1
to hold the sides of the key at n = N = 5. Thereafter, the key is lifted to a
predefined height and orientation at n = 13, after which a clockwise rotation
is performed to end the manipulation phase at n = 17.
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5 Grasping optimal control simulations

The function values J; ; for the different optimal solutions are provided in
Table .8 As in the tip pinch grasp with hard contact model, the objective
function values for their J;; show that the respective minima have been
achieved. The independence of the objective functions is observed for all
solutions, except for solution X4. The J34 = 10.91 N? value is much higher
compared to the initial guess J3,0 = 1.81e~® N2, This anomaly is reflected
in the choice of the contact points, as shown in Figure [5.11] and is further
explained below.

Table 5.8: The table shows the evaluation of the different objective functions
at the different optimal solutions J; ; while performing lateral pinch grasp.

objective solution Xo X X2 X3 X4
Ji 1.73e75 | 4.38¢ 7 | 3.41le™* | 2.48¢75 | 1.63¢7*
Jo 1.01e® | 1.00e® | 4.91e 2 | 5.78¢> 3.53e3
J3 1.81e73 | 4.71e™3 | 2.14e™2 | 4.55¢ — 6 | 1.09¢*
Ja 6.23 6.18 6.07 6.85 3.36e 7!

Objective J;

The contact points for solution X; are closer to the object centroid with
respect to the initial guess and correspondingly, the finger contact points
have moved distally, as shown in Figure For X3, all the contact points
are nearly the same as in the initial guess. For X, and X4, the finger
contact points have moved towards the finger pulp and away from the pulp,
respectively. Correspondingly, the object contact points for X2 and X4 are in
the forward-lower and backward-lower corners, respectively, of the defined
square area in the key.

Objective Js

The solution X5 for the lateral pinch shows similar behaviour to the tip
pinch, in so far as reducing the magnitude of applied torque along with
extending the two phase durations, as can be seen in Figure and Table
[B-9] respectively. For the X; and X3 solutions, the torque profiles follow
the initial guess, while for X4, the profile is peculiar across all the four joint
motions presented, with particular higher values for the thumb CMC joint.
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5.4 Lateral pinch

s

X

Xﬂ X2
Figure 5.11: Location of the contact points on the finger digits and the object
for the different solutions for lateral pinch, along with the initial guess.

Table 5.9: The table provides the phase durations in seconds for the different
objectives while performing lateral pinch grasp.

i solution Xo X X, X3 X4

reaching phase 0.0216 | 0.0216 | 0.1665 | 0.0204 | 0.0818
manipulation phase | 0.0861 | 0.0859 | 0.5522 | 0.3042 | 0.1488

Objective J3 and Ju

The plots in Figure [5.13| show the contact forces for different solutions.
They are presented with two separate axes. For Xo, X1, X2, and X3, we
use the left-side vertical axis, while for X4, we use the right-side axis. This
is due to the fact the contact force values for X4, see Js 4, are orders of
magnitude higher, compared to all other solutions. For solution, X3, the
decrease in contact force is large, as in the tip pinch. Additionally, we see a
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5 Grasping optimal control simulations
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Figure 5.12: Time evolution of the control torques for the different solutions
while performing lateral pinch grasp, for the thumb CMC joint 7 (top-
left), 7¥™MC (top-right) and the finger MCP joint {7 (bottom-left), 781°F

(bottom-right).

longer manipulation phase with 75, = 0.304 s, compared to the initial guess
with 75, = 0.0861 s, as seen in Table 5.9} Eventually, we compare the grasp
quality values for all the solutions from Table [f.I0] For the Q1 measure, X1,
X2 and X3 solutions values are similar to the initial guess. The X4 solution
has a stark reduction, which can be attributed to the a non-human like grasp
due to the contact points in the backward-lower corner of the object. This
may explain the uncharacteristic behaviour observed in the contact forces
and control torques. The Q2 quality measure shows a slight improvement for
the X5 solution, i.e. for the minimum torque change objective, suggesting
a hand posture is obtained for better transfer of control torques from the
fingers joint to perform the grasping action.
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5.5 Palmar pinch
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Figure 5.13: Time evolution for the contact forces applied by the finger digits,
thumb (left) and index finger (right) on the object for different objectives
while performing lateral pinch grasp. For each plot, the force value for solution
X4 is shown with respect to the right-side vertical axis limits.

Table 5.10: The table shows the grasp quality measures for the different
objectives while performing lateral pinch grasp.

solution
quality Xo Xi Xo X3 X4
Q1 0.0020 | 0.0020 | 0.0018 | 0.0019 | 0.0003
Q2 0.0383 | 0.0388 | 0.0500 | 0.0390 | 0.0376

5.5 Palmar pinch

The palmar pinch is performed on a cube, whose side surfaces are grasped
and then the cube is placed at a specified depth. The motion is shown in
Figure for solution Xj.

The function values for the different solutions are provided in Table [5-11]
Here again, the minimum values have been obtained for every objective
compared to the initial guess. As for the lateral pinch, the Js3 4 = 360 N?
value is an aberration, as it is much higher than the other solutions.

Objective J;

The contact points for solution X7 are not located around the centres of
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5 Grasping optimal control simulations
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Figure 5.14: Snapshots for the palmar pinch grasping maneuver at different
time nodes. Two configurations at different time nodes are superimposed
in each of the three pictures. The task is to pick and place a cube from
predefined initial and final positions. The hand starts from an open posture
n = 1 and closes the grasp at n = Ny = 7. The manipulation phase shows
the placing motion with time nodes n = 11,22.

Table 5.11: The table shows the evaluation of the different objective functions
at the different optimal solutions J; ; while performing palmar pinch grasp.

objectivg solution X, X, X X5 X,
Ji 1.55e7% | 1.04e ' | 6.27e™* | 2.43¢7* | 2.08¢™*
Jo 1.13 1.13 1.35¢° 1.12 | 9.07e7!
J3 4.43¢72 | 4.82¢7% | 3.88¢72% | l.44e * | 3.60e?
Ja 7.89¢73 | 7.91e™® | 6.88¢7% | 5.08¢7% | 1.06¢ "

the object surfaces, unlike the other grasps, as shown in Figure [5.15] For
other solutions, the object contact points are very similar to those in the
initial guess, except for the thumb-side contact points in X3 solution. The
finger contact points are very close to their initial guess for all solutions. In
particular for X4, the contact points on the finger and object have overlapped.
It’s influences on the control torques and contact forces are remarked in the
observations below.
Objective J2
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5.5 Palmar pinch

Figure 5.15: Location of the contact points on the finger digits and the object
for the different solutions for palmar pinch, along with the initial guess.

Table 5.12: The table shows the grasp quality measures for the different
objectives while performing palmar pinch grasp.

solution X, X, X X3 X4

time
reaching phase 0.0735 | 0.0735 | 0.5000 | 0.0729 | 0.3367
manipulation phase | 0.1111 | 0.1108 | 0.4989 | 0.1862 | 0.4870

For the X solution, the control torque profile follow the characteristics
from the other two grasps, in terms of reduced magnitude, as shown in
Figure [5.16] and higher phase durations, as shown in Table[5.12] The profiles
for X; and X4 largely follow the initial guess, while for X4, the magnitude is
comparatively higher, while not following the torque change profile, compared
to the initial guess.
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5 Grasping optimal control simulations
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Figure 5.16: Time evolution of the control torques for the different solutions
while performing palmar pinch grasp, for the thumb CMC joint 7M€ (top-
left), 7™ (top-right) and the finger MCP joint 7% (bottom-left), 737°F
(bottom-right).

Objective J3 and Ju

The contact force profiles are similar to the lateral pinch grasp, as shown
in Figure 5171 The force magnitude for X4 is a number of magnitudes
higher compared to the other solutions, and is shown with respect to the
right-side vertical axis in the plots in Figure [5.17} This is irrespective of the
location of object contact points which are very close to the initial guess,
and can be therefore suggested to be depending on the finger joint angle
orientation and contact point locations. In other words, a comfortable hand
pose requires higher contact forces to perform the same manipulation action,
when compared to the other objectives. The quality measure Q1 shows good
consistency for all the solutions with respect to the initial guess, as can be
seen in Table For the QY2 measure, the values show a small reduction
column-wise from X7 to X3, while for X4, the reduction is relatively higher.
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5.5 Palmar pinch
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Figure 5.17: Time evolution for the contact forces applied by the finger digits,
thumb (left) and index finger (right) on the object for different objectives
while performing palmar pinch grasp. For each plot, the force value for
solution X4 is shown with respect to the right-side y-axis limits.

Table 5.13: The table compares the grasp quality measures for the different
objectives while performing palmar pinch grasp.

solution
quality Xo X1 X2 X3 Xa
Q1 0.0020 | 0.0020 | 0.0020 | 0.0020 | 0.0019
Q2 0.0609 | 0.0606 | 0.0593 | 0.0519 | 0.0378

5.5.1 Overall observations

Here, we summarise the observations across the different grasps and contact
models for the same objective functions. For instance, while minimising the
polygon contact centroid or J; function, the contact points need neither give a
configuration with least possible minimum from an initial guess, as seen in the
tip pinch soft contact model, nor be necessarily close to the object centroid
even with the minimum possible value, as seen in palmar pinch. The latter
especially indicates that with higher number of contact points, their spread
will not necessarily be better. At the same time, there is no improvement in
either of the quality measures to suggest better control. While minimising the
rate of torque change with objective J2, the torque magnitude also reduces
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5 Grasping optimal control simulations

with an increase in the phase durations. The contact force is unaffected for
simulations with hard contact model with a marked increase for simulation
with the soft contact model, while the hand singularity quality measure Q2
shows improvement, except for tip pinch. While minimising the J3 objective,
only the contact forces, through the Lagrange multipliers, is affected, while
keeping all the other observed attributes similar to the initial guess. The
solutions obtained by minimising J4 objective are most peculiar. The torque
profiles show a noticeable disturbance when compared to the initial guess,
while the contact forces are a few magnitudes of order higher than for all
other solutions. The Q1 and @2 quality measures for lateral and palmar
pinches, respectively, are much lower compared to all other respective values,
as shown in Figure [5.18] For the tip pinch in particular, we observe that
while @; values are the same across all objectives and contact models, the
Q2 values are quite lower for the grasp with soft contacts when compared
with hard contacts. The normal force required in the soft contact model is
higher and the hand configuration to obtain such high forces results in far
from ideal hand postures that accompany high Q2 values.

4 X 103 ——tip pinch hard - - tip pinch soft“ 5 lateral pinch - palmar pinch
0.06
3 ————
0.05
L So.04
0.03 +
1
0.02
0 [ et it
Jo Ji Jo J3 Jy Jo Ji Jo J3 Ju
objectives objectives

Figure 5.18: The grasp quality measures Q1 (left) and Q2 (right) for the
different objectives Ji, ..., Js and the initial guess Jo.

In general, we can say that while the minimisation of individual objectives
fairly result in solutions which are their local minimum with their minima
values lower than their respective initial guess, the use of an individual
objective will not necessarily replicate the actual human grasping motion.
This suggests the move to using a combination of the Ji objective with
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5.6 Summary

either J2 or Js to obtain appropriate contact point locations along with
smoother dynamic characteristics. While the objective J4 can be considered a
good kinematic measure while performing static postures, in case of dynamic
manuevers it is not an ideal objective as seen from the torque and contact
force profiles. Also, the inclusion of soft contact models, while imparting
complete force closure to the tip pinch grasp, does not improve the grasp
quality measures.

5.6 Summary

The chapter presented the results from the nonlinear optimisation for the
grasping OCP across three distinct precision grasps, four objective functions
and two contact models. For different grasps with the hard contact model, the
individual objective functions generate solutions with local minimum signifying
their independence. On the other hand, with the soft contact model, the
results are not as consistent and therefore do not indicate suitability and
robustness for grasps where force closure is achieved through hard contacts.
The grasp isotropy index quality values does not indicate a change in grasp
stability for different objectives as they remain fairly the same with respect to
the initial guess, while the uniformity of transformation index shows variation
across grasps, suggesting either the use of object-related objectives or a
different quality measure to capture grasp stability behaviour in a better way.

As a future work, the objectives may be used in combination in series
or parallel to achieve composite characteristics of the underlying individual
objectives. While a parallel combination requires the use of appropriate
weighting factors to scale the objectives so that the objective function values
are of similar order, the series combination is better suited since the objectives
have demonstrated independence and the estimation of weights for a parallel
setup is non-trivial and tedious.
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6 Synergy Effectiveness

We have demonstrated two-finger precision grasp examples in Chapter [f] with
the discrete mechanics and optimal control with constraints (DMOCC, see
[LOBMOI10]) approach in Chapters |4 and [5} While it is logical to extend the
biomechanical model to the full hand, the size of the overall optimisation
problem increases tremendously. This imposes an enormous computational
challenge on the optimiser. Fortunately, the human hand exhibits a highly
coordinated motion due to its complicated underlying musculoskeletal network,
see [Kap81]. The coordinated motion has been quantified into eigen modes,
referred to as synergies [SESO8] or eigen grasps [CA09]. The concept of
synergies arose from a neuroscience perspective where it was observed that
the hand motion can be expressed as a linear combination of a basis of a
fairly reduced configuration space. Overall, it was observed that the hand can
be kinematically operated through a relatively reduced number of degrees of
freedom (DoFs). The objective in this chapter is to implement the kinematic
synergies into our multibody grasping framework. Here, we concentrate only
on the reaching or prehension phase, so as to only see the viability of using
the synergies to be able to close contact as well as possible.

The procedure to integrate synergies in the multibody formulation is done in
two ways. Firstly, we perform prehension by varying the number of synergies
and minimising objectives to achieve contact closure and compare the grasp
performance with a hand model without synergies. Secondly, we control
the hand movement in a hybrid way, i.e. through a combination of synergy
and non-synergy based model. The chapter begins with the description of
the multibody model and the inclusion of synergies in Section and the
grasp closure objectives minimised to obtain grasp closure in Section [6.2] It
is followed by the first set of results in Section Thereafter, we discuss
the hybrid kinematic actuation and the results thereof in Section [6.4] and
Section [6.5] respectively. This chapter uses and extends the work published
in [PRBL20).
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6.1 Synergy actuated hand model

6.1 Synergy actuated hand model

We describe a rigid body in the director formulation as in Chapters [2] and [3]
In short, a body is represented with twelve DoFs with configuration g =
[ e, df, df, d3T} T, with center of mass ¢ and an orthonomal director triad
{dI}I:L?,S' The hand is composed of twenty such rigid bodies connected in a
tree like structure through a combination of revolute, cardan and joints with
two rotation axes that are non-intersecting and non-orthogonal (nino). With
rigid body internal constraints and joint constraints, the model comprises of
twenty-six DoFs. These include six DoFs for the wrist such that it is free
to move in space and twenty degrees of freedom for the finger joint angles.
The complete structure is depicted in Figure [.1] The motion of the hand in
time is approximated by through discrete configuration g, = q (t»), i.e. the
approximate configuration at time node ¢,. To update the configuration from
time node n to n + 1, we apply a discrete nodal reparameterisation

qn+1 = Fy (Un+1,Qn) (6~1)

Here, w,+1 represents the increment in the minimal coordinates from time
nodes n to n + 1. The finger digit geometries are modelled as cylinders.

Although there are multiple ways to obtain these eigen grasps, see [VPP™14],
we focus briefly on the one by Santello, see [SFS98]. Herein, five subjects were
made to visualise and mime hand postures for fifty-seven different objects.
The joint angles in these poses were captured and a covariance matrix for
the captured data was created. Using singular value decomposition, the
eigen vectors form the required reduced configuration space or the principal
components (PCs), while the corresponding eigen values represented the
amount of variance. As per Santello, more than 80% of the posture variance
was accounted by the first two PCs. Nevertheless, the study prescribed
fifteen PCs, where the fifteenth eigen value or amplitude was approximately
zero. The MATLAB Toolbox Syngrasp, see [MGSP15|, provides a function
SGsantelloSynergies(), which provides the eigen grasps extracted by San-
tello in the forms of a matrix § € R2°*!5, Here, the twenty rows prescribe the
joint angles while 15 columns represent the eigen vectors or synergies. The
matrix S is ordered column-wise, as per their eigen values in the decreasing
order. Using a discrete change in the synergies, say z,+1 € R"#, the increment
in the joint angles u,+1 can be be calculated using
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6 Synergy Effectiveness

Figure 6.1: The multibody hand model. Left: the modelling of the digits as
cylindrical geometries. Right: the tree structure with the number of DoFs in
the circles. The one and two DoF joints are modelled as revolute and cardan
(fingers) / nino (thumb), respectively.

Un+1 = Szn+1 (6.2)

Consequently, Equation [6.1] can now be written as,

gn+1 = Fy (Sznt1,qn) (6.3)

6.2 Grasp closure objectives

A grasp can be simply described through closure properties, namely form
and force closures. While form closure would imply as many contact points
as degrees of freedom, force closure would suggest lesser contact points,
but maintaining the grasp through friction. The object to be grasped is
described with the configuration ¢© = [gaO’T, dlo’T, dzo'T, d3O’T]T. The

object surface depends on the configuration ¢© and certain dimensions such
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6.2 Grasp closure objectives

as radius, length etc. We use a contact point @ which is constrained to lie on
the finger digit cylindrical surface. These are defined in the digit coordinate
system. To close the contact, we define contact closure functions g between
the contact point g and the object surface, as shown in Figure [6.2] for a
spherical object. For n. such contact points, we can define an objective

Nc

Ji= Z (979:) 9 =9:(a.4°,pi) (6.4)

1=1

Figure 6.2: Left: the contact closure condition expressed in Equation
Right: the tangential contact condition expressed in Equation

The minimisation of J; Equation [6.4] will result in grasp closure with no
requirement on relative positional orientation and may also result in partial
penetrations. To improve the contact, we calculate the cosine of the angle «
between the shortest distance d, between the contact point and the object
centre, and the normal n to the finger surface at the contact point, see [CAQ9].
Similar to the contact closure condition, we can write the tangential contact
objective as

ne T
di n;

Jo = Z (Jndj)z, where  Jna;, = (1 + d|n|> (6.5)

=1
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6 Synergy Effectiveness

To achieve gap closure which may lead to proper force closure, it is essential
to minimise both objectives Ji and Ja.

6.3 Synergy kinematics results

We perform a two-fold analysis to determine the synergy effectiveness for
grasping. Firstly, the grasping simulation is done for the complete hand model.
In this model, we impose coordination between the finger interphalangeal joints
and the metacarpophalangeal joints among the fingers through constraints,
as described in [LK95]. The posture obtained here is treated as the basis for
comparison with the synergy based model. Secondly, we perform grasping
with the synergy based model, wherein the simulation is performed with a
varying number of synergies. Assuming, we prescribe N time nodes for the
optimisation, for n, synergy optimisation variables, the number of variables
reduces by (26 — n.) - N. The main goal here is to determine the minimum
number of synergies that needs to be applied to obtain a good grasp in the
sense of minimising Ji or Ji; + J2 objectives. The grasping simulation is
performed for two grasps, namely the prismatic 2-finger grasp, i.e. grasping
a cylinder, and the tripod grasp, i.e. grasping a sphere. Both grasps are
performed with three contact points, one each on the distal phalanges of the
thumb, index and middle fingers.

We implement our grasping simulation framework in the MATLAB envi-
ronment, by firstly optimising the objective

J=J (6.6)

and thereafter,
J=J1+ J (67)

subject to the kinematic path constraints, specifically Equation for the
complete hand model and Equation [6.3] for the synergy based model. The list
of optimisation variables include the configuration time history for the hand
for N time nodes the location of the contact points with respect to the finger
digits. Furthermore, the radius of the object, either cylinder or sphere is
provided as an optimisation variable, with bounds, within the range of £20%
of the initial values. As a hand which is constrained to move with respect
to a synergy matrix, it is not possible to grasp a single cylinder, the radius
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6.3 Synergy kinematics results

as an optimisation variable provides a degree of flexibility to the optimiser.
The optimisation is performed with the interior-point optimiser, IPOPT, see
[WB06], with CasADi as a automatic differentiation tool, see

Figure 6.3: Synergy actuated model (n. = 15) with prismatic 2-finger grasp by
minimising Ji 4+ J2 objective. The contact points are shown with (e) symbol.

For the prismatic 2-finger example, the resulting grasp posture is shown in
Figure [6.3] with a model actuated through n. = 15 synergies by minimising
J1 + J2 objective. Though the contact is defined for the first three fingers
only, we see a coordinated posture for the ring and little fingers as well. We
can compare this posture with other models, as shown in Figure [6.4 In
Figure [6.4] left, we present a grasp posture for a non-synergy actuated model
by minimising J; 4+ J2 objective. Here, only the index and middle fingers are
flexing to close the contact. The ring and little fingers show little flexion at the
metacarpophalangeal and interphalangeal joints due to the behaviour of the
optimiser, IPOPT. In Figure[6.4 middle, the grasp posture is obtained by only
minimising the J; objective for a synergy actuated model with n, = 15, due
to which we see clear penetration of the three distal phalanges. This posture
explains the need of the tangential contact objective J2. We also present the
grasp posture obtained with a synergy actuated model with n, = 5 synergies
by minimising both J1 + J2 objectives in Figure [6.4] right. When comparing
the different grasp postures, we can clearly observe a variety of contact points.
In particular, the inclusion of the tangential contact objective leads to an
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6 Synergy Effectiveness

increased contact area.

Figure 6.4: From left to right, we see the grasp posture for prismatic 2-
finger grasp with (left) non-synergy actuated model while minimising J1 + Jo
objectives, (middle) synergy actuated model with n, = 15 synergies and only
J1 objective to be minimised and (right) synergy actuated model with n. =5
synergies while minimising Ji + J> objectives. The contact points are shown
with (e) symbol.

The objective values for the synergy analysis is shown in Table It
can be observed that the objective value stays at the same order 2%1 12)
when performing the grasp from 15 synergies to 5 synergies. The values,
thereafter till 3 synergies, are still acceptable though higher than 1072, The
optimiser could not obtain solutions with lesser number of synergies. It can
be comfortably asserted that this grasping simulation can be performed with
5 synergies while minimising J; + J2 objectives. However, when solved with
only J; objective, we can see that it is possible to obtain gap closure from
the last column in Table[6.]] even with a single synergy.

For the tripod grasp we see a similar grasp performance when the model
is actuated with n, = 15 and n, = 5 synergies in Figure left and right
respectively, while minimising J; 4+ J2 objective. With n, = 15, the index
and ring fingers are closer to each other as compared to the posture obtained
with n, = 5 synergies, which also lead to different contact points. The
objective values retains a similar order (10711) with even 3 synergies, as seen
in Table [6.2] exhibiting a substantial reduction in the number of actuated
DoFs. Thereafter, it is still possible to obtain solutions with slightly higher
objective values while using even a single synergy. As with the previous grasp,
it is possible to obtain grasp postures while minimising only Ji objective for
all possible synergy combinations.
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6.4 Hybrid kinematics

Table 6.1: Objective values for synergy actuated model with prismatic 2-finger
grasp. The J; + J2 column shows objective function values by minimising
function in Equation , with J1 and J2 columns showing the component
values. The column only J1 shows objective function values while minimising

Equation .

number of synergies  Ji + J2 Ji Jo only Ji
15 -6.06e7 1% 2.10e7'?  -2.16e7'? | 1.46e713
14 -2.87e712 1.04e7'?  -3.92¢7'2 | 7.0le” 14
13 1.31e™ 241712 -1.55¢7 ! | 7.83¢7 14
12 -1.56e7 1% 223e712 -3.79¢7'% | 2.17e713
11 2.00e"2  2.00e"'? -2.11e7 ' | 1.70e713
10 5.82¢710  2.92¢712  579e710 | 221713

9 -1.67e713 2.79¢712 -2.96e % | 3.0le7 13
8 9.89¢72  9.96e!?2  -7.0de" M | 1.24e713
7 -4.21e712 291e712 -7.12e71? | 1.29¢7 13
6 4.63e7 2 5.80e7'? -1.17e7'? | 1.02¢7'3
5 3.32¢712  6.09¢7 12 -2.77e712 | 4.85e713
4 8.64e7%  8.65e7%9 -1.57e ! | 2.40e71?
3 1.06e7%  1.06e7%  2.72e710 | 1.29¢7 12
2 8.93¢ 14
1 1.18¢7 13

6.4 Hybrid kinematics

The optimal control grasping simulations are performed with contact closure
as holonomic constraints. An acceptable closure is considered to be with an
objective value of the order of approximately 1072, which is close to the order
of constraint tolerance in the optimal control problem. Also, as seen in the
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6 Synergy Effectiveness

Figure 6.5: Synergy actuated model with tripod grasp, see m, with
n, = 15 (left) and n. = 5 synergies. The contact points are shown with (e)
symbol.

previous section, it is not straightforward to use the same number of synergies
to close grasp for different object shapes. To overcome the limitations on
the choice of number of synergies to use along with better non-penetration
between fingers and object, it is viable to couple the synergy based model
with the constraint based model. This is done such that for a majority of the
time, the synergy based model from Equation is applied while avoiding
object penetration, while for the last few time nodes individual joint angles
are calculated from Equation to close the grasp.

The optimisation problem is expressed as minimisation of the tangential
contact function

J=J2 (6.8)

as compared to Equation as gap functions in Equation are included
in the optimisation problem as equality constraints. Additionally, it is ensured
that at the end of the synergy phase, the gap between the finger and object
surfaces is in the range of less than 1 mm. This makes it certain that the
synergy actuation performs majority of the reaching movement. The other
constraints used in this setup are position of contact points on the fingers
as equality constraints, and joint angle limits as inequality constraints. The
configuration evolution for the synergy and constraint based actuation is,
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6.4 Hybrid kinematics

Table 6.2: Objective values for synergy actuated model with tripod grasp.
The columns description follows from Table

number of synergies  Ji + J2 Ji Jo only Ji
15 1.42e7 1 2.71e7 12 1.14e7 ! | 4.13e713
14 1.41e” ' 252e712 1.15e7! | 2.06e12
13 3.38¢7 12 2.59¢713  3.12¢7!2 | 1.32¢7 14
12 4.60e712  4.41e713  4.16e71% | 3.75e7 12
11 4.32¢71%  3.08e713  4.0le7'? | 4.76e 12
10 5.68¢ 2 3.93¢7'®  5.2le7'? | 7.70e 7
9 6.39¢7 1t 7.51e712 5.6e7 | 3.38¢7 13
8 1.51e™ 1t 7.69¢713  1.44e7'' | 1.38¢712
7 7.07e™ 2 7.60e™ ' 6.31e7'2 | 9.56e7 12
6 5.65¢7 3.01e™'?  5.35¢7! | 3.75¢7 M
5 1.55e7 1 3.38¢7 1% 1.52¢7 ! | 4.56e 13
4 5.38¢711 9.57e712 4.43e71 | 7.12e71
3 4.54¢7%  4.51e7%  2.88e710 | 2.78¢722
2 5.13¢7%  4.25¢7%¢ 8.86e7°7 | 2.51e71°
1 1.59¢7%  1.35e7%  2.44¢7% | 6.99¢713

therefore, evaluated as

F;(Szi,qo) i=1
q; = Fy (Szi,ql;l) iZ?,..,,N—Q (69)
Fy(ui,qi—1) i=N-1,N
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6 Synergy Effectiveness

6.5 Hybrid kinematics results

We present results for the two grasps introduced in the previous sections, i.e.
the prismatic-2-finger and the tripod grasp. Firstly we compare the number
of optimisation variables required for the three kinematic update methods in
Table[6.3] The grasps are performed with 10 and 2 time steps for the synergy
and constraint kinematic phases, respectively. It is executed with the first two
i.e.,, n, = 2 synergies with the same bounds on all the optimisation variables
as in the previous simulations.

Table 6.3: The table provides the information about the problem size for the
optimisation variable X to perform either prismatic-2-finger or tripod grasp
simulations, with 3 contact points with 10 time nodes. The number of contact
points and object radius is excluded as it is common in the constraint based,
synergy based and hybrid kinematic cases. With these exclusions, we get
reduced optimisation vector X;eq

kinematics size (Xved)
constraint based (6 +20) x N
synergy based (6+n.)x N
hybrid (6 +12) X (N — 2) + (6 + 20) x 2

The results for the grasp postures for the prismatic 2-finger grasps are
shown in Figure In the left, the result for the synergy based grasp is
shown, for a simulation for which an acceptable solution was not possible
with IPOPT. With the hybrid configuration evolution, the results are shown
on the right with an objective value of 3.17 x 10~** with a smaller radius. To
improve the final grasp posture visually, we constrained the thumb contact
point to lie in between the index and ring finger contact points along the
cylinder axis.

Similarly, the results for the tripod grasp is shown in Figure[6.7} It is again
clear that a converged solution with full grasp closure is obtained with the
hybrid kinematics (right), as compared to the synergy based model (left), for
a slightly larger radius. The objective value for the synergy case is as per the
values in Table i.e. gap closure value of5.13¢7% and tangential contact

110



6.5 Hybrid kinematics results

Figure 6.6: Comparison of the grasp postures for Prismatic 2-Finger grasp
with the synergy (left) and hybrid (right) kinematic model. Both simulations
have been executed with n, = 2 synergies.

value of 4.25¢7°% while for the hybrid case, it is —4.36e~1°

Figure 6.7: Comparison of the grasp postures for tripod grasp with the
synergy (left) and hybrid (right) kinematic model. Both simulations have
been executed with n, = 2 synergies.
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6 Synergy Effectiveness

6.6 Conclusions

We have demonstrated a kinematic grasping methodology with coordinated
hand motion achieved through synergies. The grasping performance of the
synergy based model has been compared with an independent joint model.
The synergy analysis shows the possibility of a significant reduction in the
number of independent joint angle DoFs. It also enables the formulation
of synergistic actuation torques, as per [GBPMII|. This will result in a
considerable reduction in problem size when the method is ported to optimal
control simulations for grasping where the number of optimisation variables,
i.e. DoFs and controls, are multiplied by the number of discrete time nodes.
It was further extended to obtain a hybrid kinematic configuration evolution,
by augmenting the synergy based model with the constraint based one. This
allowed for a further reduction in the model size since the final postures were
possible to generate with only 2 synergies.

The method, however, is not free from certain drawbacks. In particular, the
kinematic hand model is dependent on the description of the synergy matrix
and hence is not readily subject to change. For example, the synergy matrix
used in this work from Syngrasp, does not allow flexion motion for the ring and
little finger CMC joints. Also, the thumb CMC joint is modelled as a universal
joint in the synergy matrix. Thus, the thumb cannot perform the passive
internal rotation motion as observed in human beings. Thus, to add more
realism to the grasps, a kinematically appropriate synergy matrix must be
used. The grasps obtained therein will be analysed for force closure properties
and their performance will be compared as per grasp quality metrics, as given
in [RS14].
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7 Conclusions

Summary In this work, an optimal control framework to perform grasping
simulations with a human hand is presented. It begins with the examination
of the anatomy of the human thumb and its influence in the kinematic mod-
elling of the human hand. It follows with the description of three types of
contact models used in grasping simulations. The constraint equations for the
contact models form the basis for developing expressions for contact forces
and thereafter, the grasp matrix and hand Jacobian. Using discrete mechanics
and optimal control with constraints (DMOCC), the aforementioned hand
and contact models are utilized with non-smooth dynamics to formulate a
nonlinear optimisation problem to describe a grasping action with two phases.
The minimisation of this problem through different objective functions demon-
strates the robustness of the DMOCC methodology to simulate biomechanical
systems.

Relevance The simulation of composite grasping action of reaching and
manipulation as a single optimisation problem while describing the dynamics
of the object and the hand through structure preserving time-stepping scheme
is a new formulation, to the best of the author’s knowledge. The inclusion of
dynamics through variational integrators avoids the artificial drift in the en-
ergy of the system which arise from the black-box commercial time integrators.
This gives a heightened sense of confidence in the solutions from minimisation,
especially with respect to the controls and contact forces. The OCP method-
ology to simulate grasping is advantageous when compared to simulators such
as OpenGrasp |[LUD™10], as the simulation environment remains integrated,
or the methodology from |[ZHZ" 20| where a multi-level optimisation was used
to calculate grasping locations and collision-free trajectories separately.

Findings The use of DMOCC to simulate human grasping is a promising
approach. The different objectives used for minimisation provide local minima
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7 Conclusions

with strong independence, though not always with the expected outcome.
For instance the contact point locations on the object in the palmar grasp
obtained with minimising the grasp contact polygon centroid objective appear
near the object corners, which from visual inspection is not the ideal location
for the holding an object such as a cube. In the case of the rate of change
of control torques objective, the lengthening of the phase durations is an
unexpected outcome along with the smoothing of the joint torque profiles.
A common consensus can be built towards rejecting the comfortable joint
flexion objective across all grasps due to the introduction of disturbances
in the contact forces and joint torque profiles. This suggests that the grasp
posture is very often far away from the kinematic mean positions at least when
performing precision grasps. With respect to the grasp quality measures, the
uniformity of transformation index can be leveraged to better understand the
hand posture while grasping as the quality values showed marked differences
across grasp types and objectives used.

The notion to reduce the grasping optimal control problem size by including
kinematic synergies is encouraging, especially through a hybrid kinematic
formulation. In path planning problems with long reaching phases, the
computational effort can be significantly made lower if the hand is controlled
through a reduced number of degrees of freedom for a majority of the time.
The kinematic synergy matrix from Santello forms a good starting point
and should be improved by developing and testing geometry-based synergy
matrices, preferably with the non-intersecting and non-orthogonal axes joint
model for the thumb.

QOutlook The methodology presented in this thesis can be extended to sim-
ulate the complete human model, as demonstrated in [BDC™ 16| [XA20] for
planning of assembly tasks. Also, in tune with the recent trends of using
machine learning techniques to simulate grasping, see [OPN18| [KBKH20],
grasping optimal control can also be extended to include reinforcement learn-
ing, as shown for an upper extremity model in [GB19]. However, the method-
ology also poses a number of challenges, which form the basis for future work.
Notably, the computation time for the optimiser in the current MATLAB en-
vironment is very high, suggesting a change of platform to perhaps C++ will
be favorable. The inclusion of muscles is desirable to make the biomechanical
model more human. On the other hand, their utility is debatable due to high
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increase in modelling complexity, namely, with respect to the anatomically
correct muscle parameters, and their origin and insertion points. Furthermore,
the evaluation of other grasp quality measures, such as the Grasp Wrench
Space (GWS), see [LMSB14], measure can be used to include a force-based
quality metric in the analysis.
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