
Dissertation

November 2024

Eduard S. Scheiterer

Dynamic analysis of a human leg model with a prosthetic foot
in the presence of polymorphic uncertainty





Dynamic analysis of a human leg model with a
prosthetic foot in the presence of polymorphic

uncertainty

Dynamische Analyse eines menschlichen Beinmodells mit
Fußprothese in Präsenz polymorpher Unschärfe

Der Technischen Fakultät
der Friedrich-Alexander-Universität

Erlangen-Nürnberg
zur

Erlangung des Doktorgrades Dr.-Ing.

vorgelegt von
Eduard Sebastian Scheiterer



Als Dissertation genehmigt
von der Technischen Fakultät
der Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 20.11.2024

Gutachter/in: Prof. Dr.-Ing. habil. Sigrid Leyendecker
Prof. Dr.-Ing. habil. Kai Willner





Impressum
Prof. Dr.-Ing. habil. Sigrid Leyendecker
Lehrstuhl für Technische Dynamik
Friedrich-Alexander-Universität Erlangen-Nürnberg
Immerwahrstraße 1
91058 Erlangen

Copyright © 2024 Eduard S. Scheiterer

Alle Rechte vorbehalten. Ohne ausdrückliche Erlaubnis des Autors ist
es nicht erlaubt, die Arbeit vollständig oder auszugsweise nachzudrucken,
wiederzugeben, in Datenverarbeitungsanlagen zu speichern oder zu überset-
zen.

All rights reserved. Without explicit permission of the author it is not
allowed to copy or translate this publication or parts of it, neither by
photocopy nor in electronic media.



Dynamic analysis of a human leg model with a
prosthetic foot in the presence of polymorphic

uncertainty

Dynamische Analyse eines menschlichen Beinmodells mit
Fußprothese in Präsenz polymorpher Unschärfe

Eduard Sebastian Scheiterer

Schriftenreihe Technische Dynamik
Band 13 2024

Herausgeber: Prof. Dr.-Ing. habil. Sigrid Leyendecker





Preface

Completing this work would have been a lot more difficult without the help
from many sources.

I would like to thank Prof. Dr.-Ing. habil. Sigrid Leyendecker for the many
years of guidance, advice and fruitful discussions that culminated in this thesis.

My thanks also go to all my former colleagues at the Lehrstuhl für Tech-
nische Dynamik for the interesting discussions, many laughs and good times
and for creating such an enjoyable atmosphere for working and teaching.

I also appreciate the German Research Foundation (DFG) which funded my
work as part of the Priority Programme SPP 1886 ’Polymorphic uncertainty
modelling for the numerical design of structures’ (Grant No. LE 1841/4-2).

Last but certainly not least, I would like to express my gratitude to my
family and friends, who have supported me for many more years than just
during this thesis. Thank you for being there for me, helping and supporting
me in whatever I do.

Erlangen, November 2024 Eduard Sebastian Scheiterer

vii





Abstract

When designing modern structural systems, such as the foot prosthesis con-
sidered in this work, analysis of their behaviour via simulations is an essential
part of the design process. This process assumes that the model and the
procedure used in the simulation both accurately represent the real struc-
ture as well as the physical laws governing its behaviour. Ideally, this would
mean, that the model is absolutely accurate and the simulation algorithms
used are without errors in their calculations. However, this is not possible for
multiple reasons. Some stem from simulation limitations, i. e., computational
limitations or numerical discretisations. Others are caused by missing infor-
mation, like for instance measurement inaccuracies or missing data. Thus, to
be feasible, a reduction in the model’s complexity is necessary although this
introduces additional uncertainty into the simulation. This uncertainty has
many sources and can either be implicitly considered when interpreting the
results by adding safety margins to the results or it can be considered explic-
itly, by modelling it and including it in the simulation. The goal of this work
is to provide an efficient algorithm for considering polymorphic uncertainty in
the simulation of human gait with a prosthetic foot and is part of the larger
Priority Programme Schwerpunktprogramm (SPP) 1886 ‘Polymorphic uncer-
tainty modelling for the numerical design of structures’.
To do this, three aspects have to be combined. Firstly, a suitable model needs
to be developed. Here, the human leg with a prosthetic foot is modelled as
a multibody system with rigid and flexible bodies. Secondly, the uncertainty
that will be considered in the simulation has to be formalised, quantified
and modelled. Then, the simulation procedure has to be expanded so it can
propagate the uncertainty through the model. Finally, the results have to be
visualised and interpreted. Two types of uncertainty are considered in this
thesis. The Graph Follower algorithm is used to propagate epistemic uncer-
tainty through the developed model, before expanding the uncertainty model
to polymorphic uncertainty in the form of fuzzy random numbers which is
propagated via the newly developed Fuzzy Random Variable Graph Follower
algorithm (FRV-GFA). Thus, this thesis contributes a forward dynamics sim-
ulation of the human leg with a flexible prosthesis for two distinct gait phases,
namely the swing phase and stance phase, in which parametric uncertainty is
explicitly considered. To do this, the existing Graph Follower algorithm’s effi-
ciency is greatly improved so it can propagate epistemic uncertainty through
the model. The main contributions of this thesis are the development of a new
model for marker position errors during optical motion capture and an effi-
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cient algorithm, based on the Graph Follower algorithm, which can propagate
polymorphic uncertainty modelled with fuzzy random variables through the
complex non-linear multibody system of a human leg with a flexible prosthetic
foot.

Keywords:
polymorphic uncertainty – Fuzzy Random Variable Graph Follower algorithm –
fuzzy random variables – epistemic uncertainty – Graph Follower algorithm –
forward dynamics – multi-body dynamics – variational integrators – prede-
formed geometrically exact beam – foot prosthesis – gait analysis – marker
based optical motion capture
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Zusammenfassung

Bei der Gestaltung moderner Strukturen, wie beispielsweise der in dieser Ar-
beit betrachteten Fußprothese, ist die Analyse ihres Verhaltens durch Simula-
tionen ein wesentlicher Bestandteil des Designprozesses. Dabei wird angenom-
men, dass das Modell und das Verfahren, das in der Simulation verwendet
wird, sowohl die tatsächliche Struktur als auch die physikalischen Gesetze,
die das resultierende Verhalten steuern, genau repräsentieren. Idealerweise
bedeutet dies, dass das Modell absolut genau ist und die in der Simula-
tion verwendeten Algorithmen keine Fehler in ihren Berechnungen aufweisen.
Dies ist jedoch aus mehreren Gründen nicht möglich. Einige resultieren aus
den Beschränkungen der Simulation, wie z. B. Rechenbeschränkungen oder
numerischen Diskretisierungen. Andere werden durch fehlende Informatio-
nen verursacht, wie zum Beispiel Messungenauigkeiten oder fehlende Daten.
Außerdem muss die Komplexität des Modells oftmals reduziert werden, um die
Simulation erst möglich zu machen, obwohl dies zusätzliche Unschärfe in die
Simulation einführt. Diese Unschärfe hat viele Quellen und kann entweder
implizit berücksichtigt werden, indem Sicherheitsmargen bei den Ergebnis-
sen eingerechnet werden, oder sie kann explizit berücksichtigt werden, indem
sie modelliert und in die Simulation einbezogen wird. Das Ziel dieser Ar-
beit, welche im Rahmen von Teilprojekt 14 des Schwerpunktprogramms SPP
1886 ‘Polymorphe Unschärfe-Modellierung für die numerische Gestaltung von
Strukturen’ entstand, ist es, einen effizienten Algorithmus zur Berücksichti-
gung polymorpher Unschärfe bei der Simulation des menschlichen Gangs mit
einer Fußprothese zu liefern.
Um dies zu erreichen, müssen drei Aspekte kombiniert werden. Erstens muss
ein geeignetes Modell entwickelt werden. In dieser Arbeit wird das men-
schliche Bein mit einer Fußprothese als Mehrkörpersystem mit starren und
flexiblen Körpern modelliert. Zweitens muss die Unschärfe, die in der Sim-
ulation berücksichtigt werden soll, formalisiert, quantifiziert und modelliert
werden. Dann muss das Simulationsverfahren erweitert werden, damit es die
Unschärfe durch das Modell propagieren kann. Schließlich müssen die Ergeb-
nisse visualisiert und interpretiert werden. In dieser Arbeit werden zwei Arten
von Unschärfe berücksichtigt. Der Graph Follower algorithm wird verwendet,
um epistemische Unschärfe durch das entwickelte Bein- und Fußprothesen-
modell zu propagieren, bevor das Unschärfemodel auf polymorphe Unschärfe
in Form von fuzzy random variables erweitert wird, die über den neu entwickel-
ten Fuzzy Random Variable Graph Follower algorithm (FRV-GFA) propagiert
wird. Somit ermöglicht diese Arbeit eine Simulation der Vorwärtsdynamik

xi



des menschlichen Beins mit einer flexiblen Prothese für zwei unterschiedliche
Gangphasen, nämlich die Schwung- und Standphase, bei der parametrische
Unschärfe explizit berücksichtigt wird. Hierfür wird die Effizienz des beste-
henden Graph Follower algorithm erheblich gesteigert, damit epistemische
Unschärfe durch das Modell propagiert werden kann. Die Hauptbeiträge
dieser Arbeit sind die Entwicklung eines neuen Modells für Fehler in der
Markerposition während der optischen Bewegungsmessung und ein effizien-
ter Algorithmus, basierend auf dem Graph Follower algorithm, der polymor-
phe Unschärfe, modelliert mit fuzzy random variables, durch das komplexe
nichtlineare Mehrkörpersystem eines menschlichen Beins mit einer flexiblen
Fußprothese propagieren kann.

Schlüsselwörter:
polymorphe Unschärfe – Fuzzy Random Variable Graph Follower algorithm –
fuzzy random variables – epistemische Unschärfe – Graph Follower algorithm –
Vorwärtsdynamik – Mehrkörpersysteme – Variationsintegratoren – vorgekrümmter
geometrisch exakter Balken – Fußprothese – Ganganalyse – markerbasierte
optische Bewegungsmessung
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Chapter 1

Introduction

Simulations have become integral to modern engineering practices, providing
a vital means for engineers to test and optimise designs without the need
for costly and time consuming physical prototypes or extensive experimental
trials. Furthermore, simulations offer engineers the flexibility to explore di-
verse scenarios, evaluate trade-offs, and pinpoint potential risks, ultimately
contributing to an improved quality and enhancing innovation. Despite their
advantages, simulations encounter challenges related to the validity and ac-
curacy of the underlying models and data. Assumptions, simplifications, and
approximations that are unfortunately inherent in simulations may not always
accurately reflect the complex real-world behaviour or conditions of the exam-
ined systems and introduce uncertainty into the simulation and its predictions.
This uncertainty is further increased in cases where simulations can not cap-
ture all aspects of intricate systems, for instance human and environmental
factors or unforeseen events. These factors add another layer of complexity
to the modelling and simulation process. While the question, whether we
can know everything with absolute precision is an interesting philosophical
question, it does not help when classifying or dealing with uncertainty. As
Professor John Allen Paulos said in 1945 [Pau03],

"Uncertainty is the only certainty there is, and knowing how to
live with insecurity is the only security."

In a deterministic simulation and subsequent analysis of structures, a model
maps input variables to desired output variables. Various parameters may be
present in the model and influence the results. Every model is based on as-
sumptions or idealisations of the problem and the environment in which it
lives. However, the truth content of a statement based on the simulation re-
sults is limited by the model’s level of detail and by the accuracy to which the
parameters and input variables are known. Both of these are subject to un-
certainty, which is in essence a lack of knowledge. According to, e. g., [Möl00]
and [Möl04], model uncertainty is an uncertainty in the mapping itself. Thus,
an uncertain model leads to uncertain model responses even for crisp input
variables. On the other hand, for uncertain input data, even a deterministic
model yields uncertain responses. The reasons for uncertainty are generally
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very complex and depending on their particular cause, different types of un-
certainty and specialised algorithms for their consideration are necessary.

This thesis is a result of subproject 14 of the German Research Founda-
tion’s SPP 1886 Priority Program [SPP], which delves into the development
of models and structure-preserving methods for simulating fuzzy biomechan-
ical optimal control problems in the presence of uncertainty. The overarching
goal, spanning Phases I and II, is to ensure the reliable prediction of human
movement with prostheses by incorporating uncertainties that are present in
material properties and human gait. The research methodology involves con-
ducting experiments with a specific foot prosthesis, measuring material prop-
erties, and modelling them as fuzzy material parameters. Additionally, gait
data is recorded and analysed to establish an uncertain model of a human leg.
The primary focus lies in advancing simulation methods for forward dynamics
and optimal control to accommodate polymorphic uncertainty for analysing
prosthetic structures throughout their design and life cycle. Dealing with the
computational complexity stemming form the uncertainty is one of the main
challenges within this research.
Addressing the core problem, this thesis concentrates on the biomechanical
simulation of a human leg with a prosthetic foot while explicitly considering
polymorphic uncertainty in the model’s parameters. Like many biomechanical
systems, simulating the human leg with a prosthesis offers numerous advan-
tages, enabling the calculation of quantities that are challenging or impossible
to measure in vivo. For instance, the internally stored energy in a prosthesis,
which is linked to the perceived walking comfort of patients, is challenging to
measure during use. Simulations offer a valuable option for obtaining insights
into such quantities. These can be used to further improve prosthesis design.
To enable the simulation of gait with a prosthesis, a mathematical model of
the human leg and prosthesis, incorporating multibody dynamics and pre-
deformed geometrically exact beam theory, is developed. The model is then
simulated using variational integrators known for their excellent long-term
energy behaviour, which makes them especially suitable for energy-related
problems. However, being a biomechanical system, there are many sources
and causes for uncertainty. Uncertainties in biomechanical systems arise from
individual variations in requirements, applications and anthropomorphic mea-
sures, as well as from the materials used for prostheses and their associated
manufacturing processes.

Finding a balance between considering the most relevant uncertainties and
the model’s abstraction from reality is crucial. Furthermore, developing suit-
able algorithms to propagate uncertainty through the model is essential, es-
pecially considering the high computational cost typically associated with un-
certainty analysis. This becomes even more pronounced when dealing with a
non-linear multibody model consisting of rigid (leg) and flexible (prosthesis)
bodies, where there are many sources of uncertainty.
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This thesis progresses the stated goal with four contributions. In Phase I of
the project, the Graph Follower algorithm was developed and applied to dif-
ferent structures, see [Eis19a; Eis19b; Piv19]. The work for this thesis began
with the development of a prosthesis model of the Össur Vari-Flex® [Sch19]
based on the reverse engineering work done in [Soe19]. Based on this, the first
main contribution of this thesis is the development of the leg and prosthesis
model, including consideration of the layered structure of the prosthesis via
homogenisation. With this model, two distinct gait phases can be simulated
with forward dynamics, see [Sch21b; Sch21a]. Then the Graph Follower algo-
rithm was applied to the model [Sch22b] which required the development of
substantial optimisations of the algorithm’s performance, which are the second
major contribution. While measuring human gait with optical marker based
motion capture to quantify the underlying uncertainty of the measurement
in [Alj20; Hei21] a new error model for marker position errors was developed
and proposed in [Sch24b], using the capabilities of the Graph Follower al-
gorithm to efficiently propagate epistemic uncertainty in the form of fuzzy
numbers through the joint angle calculations of real gait measurements. This
new error model is the third contribution. However, the project’s goal is
to consider polymorphic uncertainty during gait with a prosthetic foot. The
fourth contribution is the development and improvement of the Fuzzy random
variable Graph Follower algorithm(FRV-GFA), which is capable of propagat-
ing polymorphic uncertainty in the form of fuzzy random variables. A first
suggestion for this algorithm, which builds on the already available Graph
Follower algorithm, was proposed in [Sch24a] and the algorithm was further
improved in this thesis. This work summarises all of the developments and the
required theories and introduces an improved version of the FRV-GFA which is
capable of propagating polymorphic uncertainty modelled with fuzzy random
variables in the model’s parameters though the forward dynamics simulation
of the human leg with a prosthetic foot for two distinct gait phases.

Outline

This thesis has three different aspects to consider. Firstly, uncertainty has to
be quantified and modelled so it can be propagated through a simulation and
suitable algorithms for that propagation are required. Secondly, a model of
the human leg and of human gait have to be developed. Lastly, the prosthetic
foot has to be modelled and a viable forward dynamics simulation of the model
has to be implemented. Each of these is their own distinct field. Following
this, the first three chapters of this thesis each introduce one field, with its own
motivation, literature review, theory and how it pertains to the rest of this
work. Then, once the individual parts have been described, their assembly to a
whole and the different results are shown. Chapter 2 introduces uncertainty in
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general, how it can be classified, how it is quantified for subsequent simulations
and the polymorphic uncertainty model for this work is introduced. Chapter 3
describes the lower limb anatomy of humans and the gait cycle before optical
marker based motion capture is introduced and a novel error model for marker
position uncertainty is proposed in Section 3.5. Foot prostheses are briefly
summarised in Chapter 4, before the biomechanical model developed and used
in this work is described. This includes the theory required for understanding
the forward dynamics simulations. Finally, the application and results of
different combinations of the uncertainty theory and models are shown in
Chapter 5 before summarising the results produced during this thesis and
providing an outlook for the project continuation in Chapter 6.

Scientific contributions

During this thesis, two peer-reviewed journal papers were produced (Fuzzy for-
ward dynamics of distinct gait phases with a prosthetic foot [Sch22b; Sch22a],
Marker position uncertainty in joint angle analysis for normal human gait –
a new error modelling approach [Sch24b]) and the results were presented at
national and international scientific conferences, (SPP1886 annual meetings,
GAMM2020 & 2021, WCCM2022, ICIAM2023) including the published pro-
ceedings [Sch21b; Sch21a]. Four student theses [Alj20; Hei21; Hüb22; Blo23]
were supervised. Two contributions were made to the book [Kal24]. Chapter
[Sch24a] summarises the entire SPP subproject 14 up to 1st of July 2024,
which this thesis is part of. A contribution was also made to the Chapter
[Sch24c].

Use of previously published works

Since this thesis aims to present the whole picture of my research at the
Institute of Applied Dynamics (Lehrstuhl für Technische Dynamik, LTD),
some sections quote from my previous works. This is noted at the beginning
of every quoted section and summarised here for reference. Section 2.5.2
quotes from [Sch24a]. Section 2.6.1 quotes from [Sch22b]. Section 2.6.2
quotes from [Sch22b]. Section 2.6.3 quotes from [Sch22b]. Section 2.7.1
quotes from [Sch24a]. Section 2.7.2 quotes from [Sch24a]. Section 3.7.1
quotes from [Sch24b]. Section 3.7.2 quotes from [Sch24b]. Section 4.2 quotes
from [Sch22b]. Section 4.2.4 quotes from [Sch22b]. Section 5.2 quotes from
[Sch22b]. Section 5.3 quotes from [Sch22b]. Section 5.5 quotes from [Sch24b].
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Chapter 2

Working with uncertainty

The main focus of this work is the creation of an algorithm capable of propa-
gating input parameters affected with polymorphic uncertainty though a com-
plex multibody forward dynamic simulation with rigid and flexible bodies. To
do this, it is necessary to first understand what uncertainty is and what it’s
sources and causes are. This chapter details the different types of uncertainty,
which type is suited to what situation and how they can be combined to form
polymorphic uncertainty. Each uncertainty type introduction is followed by
methods of propagating that uncertainty, including the algorithms that are
improved or developed during this work.

Uncertainty refers to the range of possible values that a parameter, measure-
ment, statement or calculation could have due to errors or unknown factors.
For example, when trying to guess how many objects X are in a volume Y, you
might have a pretty good idea, but there’s always a chance you could be off by
a few (or a lot). This unknown possible gap between your guess and the true
value is called uncertainty. Of course, in engineering, having a good guess is
not really sufficient, especially when safety is a concern. Thus, before methods
can be introduced to deal with uncertainty, the different theories are briefly
introduced and the models for uncertainty used in this work are described.

Uncertainty is present in manifold ways and is caused by a variety of effects.
For instance, [Oha04] detailed some of the uncertainty in computer simula-
tions, such as model uncertainty or sample size in Monte Carlo simulations,
and [Kiu09] discusses the question whether the classification of uncertainty
matters. In general, uncertainty can be understood as a lack of knowledge.

Previous works Parts of this chapter are based on previously published works.
Specifically, the Sections 2.5, 2.6.2 and 2.6.3 are from my previous publication
[Sch22b]. Section 2.7 is published in part in [Sch24a].

2.1 Types of uncertainty

The most common way to classify uncertainty is by the cause for said uncer-
tainty. Generally, three causes are recognised in literature.



Chapter 2 Working with uncertainty

Uncertainty caused by variability is usually modelled with stochastic quan-
tities and is called aleatoric uncertainty. It is a type of uncertainty that
arises from the inherent randomness or variability of a phenomenon and is
also known as statistical or irreducible uncertainty, as it cannot be reduced by
collecting more data or improving the model. Classical examples include an
ideal dice throw or a Galton board, invented by Francis Galton in 1873 [Gal89]
and sketched in Figure 2.1a. It consists of a reservoir of beads on the top from
which the beads drop onto a pyramid of pegs. When a bead drops onto a peg,
it either continues downward on the left or right side and hits the next peg
below, again either going to the left or right. This is repeated for many beads
over multiple rows of pegs and the beads are gathered in bins below the final
row of pegs. If enough beads are used, the typical bell curve emerges from the
stacking height of the beads in the bins. The Galton board is often used to
demonstrate the central limit theorem, an important theorem when dealing
with aleatoric uncertainty. This type of uncertainty can be represented with
probability theory which relies on a probability measure, often a probability
distribution, to describe or quantify the uncertainty. This probability measure
indicates how likely an event is to occur.

Uncertainty caused by inaccuracy or imprecision is usually modelled with
fuzzy quantities, such as fuzzy numbers, and is called epistemic uncertainty.
Inaccuracy refers to the deviation of a measurement or value from the true
or correct value, while imprecision refers to the lack of consistency or re-
peatability in the measurements [Tra08]. The underlying idea of this type of
uncertainty is, that while a quantity could be known exactly, the required ef-
fort to obtain that level of precision or accuracy is not feasible or the quantity
is affected by subjective factors. Thus, this type of uncertainty is considered
reducible. In contrast to the probability measure, this type of uncertainty
uses a possibility measure, which indicates the truth or plausibility of a state-
ment, not its probability. Epistemic uncertainty is caused by factors such
as systemic biases or procedural limitations, i. e., accuracy limitations on the
measurement equipment. It is also commonly used to model uncertainty as-
sociated with language where words allow for interpretation of the specific
meaning, see Figure 2.1b.

Uncertainty caused by incompleteness is usually modelled with fuzzy or
polymorphic quantities, a combination of stochastic and fuzzy quantities. The
underlying idea of this type of uncertainty is, that there is a knowledge gap
about the process itself or where exactly the uncertainty may stem from.

The main difference between possibility theory and probability theory is
that they use different types of uncertainty measures. Specifically, possibility
theory uses a measure, called the membership function, that ranges from 0 to
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2.2 A note on the mathematical notation of uncertainty

(a) Sketch of a Galton board used to
demonstrate the bell curve of the nor-
mal distribution.

(b) Sketch of how language is not al-
ways precise. A specific temperature
value is certain, but the word "hot" is
open to interpretation.

Figure 2.1: Two different causes for uncertainty.

1 and defines the membership of a function or variable in the set. In contrast,
probability theory uses one additive measure that sums up to 1, e. g., the
cumulative probability function. Possibility theory uses fuzzy sets that allow
partial membership, while probability theory uses crisp sets that allow only
full membership. Possibility theory relies on expert knowledge or linguistic
expressions, while probability theory relies on statistical data or mathematical
models. However, possibility theory and probability theory are not incompat-
ible or contradictory. They can be seen as complementary ways of handling
uncertainty, depending on the context and the type of information available.

The "correct" uncertainty measure for a given situation is still an open ques-
tion. In this work, the uncertainty is modelled with fuzzy numbers for epis-
temic uncertainty and the uncertainty model is later expanded to a polymor-
phic model with fuzzy random numbers, which combine probability density
functions with a method for discretising fuzzy numbers to form the polymor-
phic uncertainty model.

2.2 A note on the mathematical notation of uncertainty

Parametric uncertainty, as is examined in this work, refers to the lack of
knowledge what specific value a parameter p has for a given simulation or

7
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measurement. It is assumed, that the value p is within in a larger space P
such that p ∈ P ⊆ ℝ. As mentioned, to consider the uncertainty in simulations
it has to be quantified with an uncertainty measure. For aleatoric (stochastic)
uncertainty, the uncertainty is quantified via the probability density function
Fpdf. Thus, a random variable p̂ consists of all pairs p̂ = {p, Fpdf(p) | p ∈ P }.
In contrast, epistemic uncertainty which is modelled with fuzzy numbers here
uses a membership function µp̃ as its uncertainty measure, which asses the
"truth" of a value. A fuzzy number p̃ then consists of p̃ = {p, µp̃(p) | p ∈ P }.

2.3 Quantifying aleatoric uncertainty

Aleatoric uncertainty can be modelled with stochastic quantities, such as ran-
dom variables or random processes, that are commonly described with prob-
ability distributions.

Specifically, a random variable is a mathematical representation of a ran-
dom event. This means it’s value is not known, until the event is observed,
termed a realisation of the random variable. For example, a dice roll is a
random event with six possible outcomes, namely one, two three, four, five or
six. Each of these values is a possible realisation of the random event. For
an ideal fair dice, it is assumed that each of these has the equal probability
of 1

6 . Of course, this is a very common and simple example of randomness.
For more complex probabilities, probability density functions (PDFs), denoted
with Fpdf, are used to describe and quantify the realisations of the random
variable. These distributions mathematically describe the likelihood or prob-
ability of different outcomes occurring in a given set of events or experiments
and can be continuous or discrete. The probability for the random variable to
fall within a particular interval is given by the integral of this variable’s PDF
over that interval. Sometimes, instead of a PDF a cumulative distribution
function (CDF) is provided. While a PDF gives the probability of a specific
value or event to occur, a CDF provides the cumulative probability that a
specific value or event of a random variable is smaller or equal to a certain
value. Thus, it is the integral of the PDF. A random process includes the
aspect of time in a random variable, meaning the probability function is both
a function of the random variable and time.

Two statistical measures that provide insights into the aleatoric uncer-
tainty’s behaviour when represented by a PDF are the mean µp̂ and standard
deviation σ. The mean µ, also called the expected value, is a measure of
the central tendency of a probability distribution. The mean of the random
variable p̂ is given by

µp̂ = µ[p̂] =
∫ ∞

−∞
pFpdf(p)dp, (2.1)
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where Fpdf(p) is the probability density function at the specific realisation p
of the random variable p̂. A low standard deviation indicates that the values
are likely close to the mean, while a high standard deviation indicates that
the values are likely to be spread out over a wider range. Thus, the standard
deviation σ is a measure of how far values are dispersed relative to the mean.
The standard deviation of p̂ is

σp̂ =

√∫ ∞

−∞
(p − µp̂)2Fpdf(p)dp. (2.2)

The variance of p̂ is σ2
p̂.

The selection of an appropriate PDF for a given scenario greatly affects the
outcome and is an important part of the uncertainty modelling and quantifica-
tion process. Each of these distributions has a specific formula that describes
the probability of observing a certain value or range of values of the stochastic
quantity.

The normal distribution The normal or Gaussian distribution N(µ, σ) is de-
fined by the PDF on the interval p ∈ P = (−∞, ∞)

Fpdf(p) = 1
σ

√
2π

eξ with ξ =
(

− (p − µp̂)2

2σ2
p̂

)
, (2.3)

where µp̂ is the mean and σp̂ is the standard deviation of the random variable
p̂ and results in the typical bell curve, shown in Figure 2.1a and Figure 2.2.
The normal distribution is often used to model uncertainty caused by multiple
subsequent uncertain processes. Why the normal distribution is so common
can be explained by the central limit theorem.

Central limit theorem The central limit theorem (CLT), states that the dis-
tribution of the mean of the sum of independent and identically distributed
(i.i.d.) random variables with finite variance converges to a normal distribu-
tion as the sample size increases [Pis14]. The independent requirement means
that drawing a sample does not affect the outcome for future drawings, e. g.,
tossing a coin and getting heads does not affect the next toss. In contrast,
drawing coloured balls from an urn changes the probability of drawing fu-
ture balls of a specific colour. The ‘identically distributed’ requirement means
that the random variables share the same distribution. The CLT has many
applications in statistics and can be stated as follows. Let p̂1, p̂2, . . . , p̂n be
a sequence of i.i.d. random variables with mean µ < ∞ and finite variance
σ2 < ∞, e. g., the sum of the outcome of the throw of n dice (an outcome
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being the number of dots facing upward). The normalised sum is defined as

¯̂pn = (p̂1 + p̂2 + · · · + p̂n) − nµ

σ
√

n
. (2.4)

Note that when adding two i.i.d. random variables p̂1 and p̂2, the mean and
variance of the sum are µp̂1+p̂2 = µp̂1 + µp̂2 and σ2

p̂1+p̂2
= σ2

p̂1
+ σ2

p̂2
[Pis14].

Then, as n → ∞, the CLT states that

lim
n→∞

Fpdf(p̄n) = N(0, 1), (2.5)

where N(0, 1) denotes the standard normal distribution with µ = 0 and σ = 1.
In other words, if many (n → ∞) independent random variables are added,
the probability distribution of the resulting normalised sum resembles the
standard normal distribution. The CLT was first formulated by Abraham de
Moivre in 1733 for the case of binomial distribution, and later generalized by
Pierre-Simon Laplace in 1810. The modern version of the CLT for i.i.d. ran-
dom variables was proved by Aleksandr Lyapunov in 1901 using his famous
Lyapunov’s central limit theorem. There are also variants of the CLT that
relax the assumptions of identical distribution, such as Lindeberg’s central
limit theorem. For more detail see [Pis14; Bil95] or, for an excellent summary
video, [San23]. In short, the CLT describes that if many independent random
variables are combined, a normal distribution emerges and thus explains why
the normal distribution is so common.

The beta distribution The beta distribution is a continuous probability dis-
tribution that has two parameters, typically denoted by α and β. In contrast to
the normal distribution, the Beta distribution is defined for parameter values
in the interval p ∈ [0, 1]. It can be scaled for other values via multiplication.
The probability density function of the beta distribution B(α, β) is given by

Fpdf(p) = pα−1(1 − p)β−1

G(α, β) with G(α, β) = Γ(α)Γ(β)
Γ(α + β) (2.6)

where α and β are the shape parameters that determine the shape of the
distribution. G(α, β) serves as a normalization constant to ensure that the
total probability integrates to 1. The beta function is defined in terms of the
gamma function Γ(x) = (x − 1)!. The mean of the beta distribution is given
by

µp̂ = α

α + β
, (2.7)
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and the standard deviation is

σp̂ =
√

αβ

(α + β)2(α + β + 1) . (2.8)

The Beta distribution is very flexible and can take on many different shapes
depending on the values of α and β.

Further examples of common PDFs

There are many other distributions, see for instance [Mun15], like the Uniform
distribution or the exponential distribution.
The Uniform distribution assigns equal probability to all values within a des-
ignated interval. For example, a random variable p̂ uniformly distributed on
the interval [a, b] ∈ ℝ has the PDF

Fpdf(p) = 1
b − a

(2.9)

for a ≤ p ≤ b and Fpdf(p) = 0 elsewhere. Note that for discrete random vari-
ables with n possible values, like a dice throw (n = 6), the PDF is Fpdf(p) = 1

n
.

The uniform distribution is apt for scenarios devoid of favouritism or bias, such
as ideal dice rolls or random number selection.
The exponential distribution exhibits a decreasing curve from a positive value
at zero, the exponential distribution’s PDF is

Fpdf(p) = λe−λp (2.10)

for p ≥ 0 and Fpdf(p) = 0 elsewhere, where λ is the rate parameter. This
distribution aptly models events with a constant probability per unit time,
such as the inter-arrival times of customers, the lifespan of a light bulb, or
the decay of radioactive atom. These examples merely scratch the surface, as
numerous other PDFs exist, each tailored to model various phenomena with
distinct characteristics.

It should be noted, that most probability distributions, like for instance the
Normal distribution are infinite. To deal with these numerically, they can be
truncated to include a desired percentile, i. e., for a distribution including the
99th percentile, only the interval from 1% likelihood to 99% is included. Some
distributions, like the beta distribution, are limited to [0, 1]. Depending on
the data and problem, a suitable distribution has to be chosen. Fitting the
"right" distribution to the available data is a common problem in statistics
and is only mentioned here as a task during uncertainty quantification, since
it would go beyond the scope of this work.
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Sources of aleatoric uncertainty

In this work, engineering and medical aspects need to be considered. In engi-
neering, aleatoric uncertainty can arise from the variability of material prop-
erties, loading conditions, environmental factors or manufacturing tolerances,
while in medicine, the uncertainty can arise from the variability of patient’s
anthropomorphic measures, a disease’s cause or symptoms and the patient’s
preferences.

2.4 Propagating aleatoric uncertainty

Once quantified, aleatoric uncertainty can be propagated using various meth-
ods. These methods can help estimate the range and likelihood of pos-
sible outcomes, as well as the sensitivity and robustness of the model to
aleatoric uncertainty. Here, the goal of propagating aleatoric uncertainty
is to calculate the uncertain target output or target function f based on
the uncertain input parameter p̂ with the resulting uncertain target output
f̂(p̂) = {f(p), Fpdf(f(p)) ∀ p ∈ P }. An example of a target output is how far a
cantilever beam deforms in one direction, based on a stochastic distribution of
the beam’s Young’s modulus, a material parameter. Whatever method is used
to propagate the uncertainty, one thing all of these methods have in common,
is that they require samples to be drawn or generated from the PDF.

Sampling

Sampling is a crucial step in dealing with stochastic uncertainty [Ram98].
Basically, sampling means the process of randomly selecting or drawing a
specific sample from a given data space. When simulating with stochastic
uncertainty, where the input data is governed by a probability distribution or
probability density function, sampling refers to obtaining a specific value of
this function, with the aim, that if many samples are drawn, the distribution
is well represented. Figure 2.2 shows the main problem with sampling. To
accurately represent the underlying distribution, a lot of samples are necessary.
The same probability distribution is used across all examples for the sampling
in Figure 2.2. Then, a progressively increasing number of samples is drawn
from this distribution and used as input data for distribution fitting, i. e.,
the process of calculating the "best" possible probability distribution for these
data. Of course, the definition of "best" varies, depending on the use case
and available data. As can be seen in Figure 2.2, if only 10 or 100 samples
are used for the fitting, the difference between the generating distribution’s
mean and standard deviation and the fitted distribution’s mean and standard
deviation are quite large. However, as more samples are generated and used
for the fitting, this difference shrinks. Here, Matlab 2023b’s fitdist function is
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Figure 2.2: Comparing the effect of different sample sizes on the resulting fit-
ting. All samples are generated from the same initial probability distribution,
a normal distribution with the mean µ = 0 and standard deviation σ = 1. The
more samples are used for the fitting, the better the match between the initial
and fitted distribution. The red line shows the fitted PDF and a histogram of
the samples is shown in blue.

used for the fitting of a Normal distribution. fitdist uses an automatic binning
algorithm to determine the number of bins in the plot. This dependency on
sample size is the main reason why stochastic analyses are computationally
very expensive. This problem is further compounded, if propagating a sample
through a model is also computationally expensive.

However, sampling methods vary in their applicability, accuracy and effi-
ciency depending on the characteristics of the uncertainty distribution and
the problem structure. Here, only some examples are shown, to highlight the
importance of considering the sampling method when dealing with aleatoric
uncertainty. Some possibilities that do not rely on purely random sampling
are Markov chain Monte Carlo simulations or Latin Hypercube sampling.

Monte Carlo simulation

A Monte Carlo simulation is a method used to propagate aleatoric uncertainty
through a model [Cro20]. In this method, each input variable of the model is
randomly sampled from the governing probability distribution and the output
of the model is calculated for each sample. If this is repeated many times,
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the uncertainty in the output can then be estimated by statistical analysis
of the resulting output distribution. It is evident, that the sampling process
has a large effect on the results and computational efficiency. Monte Carlo
simulations generally require a large number of samples to achieve the desired
accuracy, and without advanced sampling methods, problem-specific informa-
tion is not exploited to reduce the computational cost.

Markov chain Monte Carlo simulations

A Markov chain is a stochastic model describing a sequence of possible events
in which the probability of each event depends only on the state attained in
the previous event [Chu67]. The defining characteristic of a Markov chain is
that no matter how the process arrived at its present state, the possible future
states are fixed. Markov chain Monte Carlo simulations (MCMC) are a class of
algorithms for sampling from probability distributions based on constructing a
Markov chain that has the desired distribution as its equilibrium distribution,
see [Gil95b; Gey11; Gil95a]. The state of the chain after a large number of
steps is then used as a sample of the desired distribution. MCMC simulations
allow for parameter estimation such as means and variances.

Latin Hypercube sampling

Latin Hypercube sampling (LHS) is a statistical method for generating a near-
random sample of parameter values from a multidimensional distribution, see
for instance [Mck79; Hel03; Men23]. It is often used to construct computer
experiments or for Monte Carlo integration, a numerical integration method
for definite integrals which is particularly useful in higher dimension and thus
benefits from the LHS method. The advantage of LHS is that it ensures a
more even distribution of sample points in the parameter space than would
be possible with pure random sampling.

In conclusion, sampling methods are essential tools for stochastic uncer-
tainty, but they have different strengths and limitations depending on the na-
ture of the uncertainty and the problem. Therefore, it is important to choose
an appropriate sampling method that can capture the relevant features of the
uncertainty and provide reliable estimates of the solution.

2.5 Quantifying epistemic uncertainty

Epistemic uncertainty can be modelled with fuzzy quantities, such as fuzzy
sets. These were introduced by Zadeh [Zad65] in 1965 and expand classical set
theory. In a classical set, membership is binary. If we denote the membership
of an element p in the classical set P with a membership function µp̃(p), it
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has two possible values. Either an element p is in the set µp̃(p) = 1 | p ∈ P or
it is not µp̃(p) = 0 | p /∈ P . For fuzzy sets, the membership of an element p is
no longer binary but is governed by a membership function µp̃(p). In [Möl07],
“a fuzzy variable p̃ is defined as an uncertain subset of a fundamental set P ”1

p̃ = {p, µp̃(p) | p ∈ P }, (2.11)

where the uncertainty is defined by the membership function µp̃(p). An ex-
ample of a fuzzy number is shown in the middle of Figure 2.4. To qualify
as a fuzzy number, a fuzzy variable has to fulfil three conditions, namely the
membership function has to be normalised

0 ≤ µp̃(p) ≤ 1 ∀ p ∈ P (2.12)

and it is required to fulfil convexity

µp̃(p2) ≥ min [µp̃(p1); µp̃(p3)] ∀ p1, p2, p3 ∈ ℝ with p1 ≤ p2 ≤ p3. (2.13)

Finally, the membership function of a fuzzy number can have the value of
µp̃(ppeak) = 1 only for one value of ppeak, also referred to as the peak point.

2.5.1 α-discretisation of fuzzy numbers
A convex fuzzy number can be described with the help of α-level discretisation.
The α-level cuts or α-level sets Pα = [pαl; pαr] are defined by

pαl = min[ p | µp̃(p) ≥ α] (2.14)
pαr = max[ p | µp̃(p) ≥ α], (2.15)

see for instance [Möl07; Möl04]. The set

Sp̃ = [p | µp̃(p) > 0] (2.16)

is referred to as the support of the fuzzy variable and and is referred to as an
α-level set with α = 0 with the interval boundaries

pαl = lim
ᾱ→+0

[min[ p | µp̃(p) > ᾱ]] for α = 0 (2.17)

pαr = lim
ᾱ→+0

[max[ p | µp̃(p) > ᾱ]] for α = 0. (2.18)

Due to the convexity of fuzzy numbers, the following relationship between
α-level sets holds

Pαk+1 ⊆ Pαk ∀ αk+1, αk ∈ [0; 1] (2.19)
1The variable names have been changed to fit with the notation in this thesis.
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Chapter 2 Working with uncertainty

with α1 = 0 ≤ α2 ≤ ... ≤ αk+1 ≤ ... ≤ αk ≤ ... ≤ αNα−1 ≤ αNα = 1.
This implies that a higher α-level set is contained in lower α-level sets.

2.5.2 lαrα-discretisation of fuzzy numbers

Based on the α-level discretisation introduced in Section 2.5.1, an alternative
description of fuzzy numbers from [Möl07] is introduced, which is later used to
describe polymorphic uncertainty. The following is quoted from my previous
work [Sch24a] Section 2.2. Variable names in the text and figures have been
changed to better fit this thesis. Figures and tables have been modified to
suit the format of this thesis.
“
Fuzzy numbers can be described with lαrα-discretisations as shown in [Möl07]
and visualised in Figure 2.32.

µp̃(p)
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2
3

1
3

0
α1 = 0

α2 =
1
3
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2
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∆pα4r

peak point

p

Figure 2.3: The lαrα-discretisation of a fuzzy number2, based on [Möl07].

Starting from the peak point pαNα
, with Nα = 4 in Figure 2.3, each follow-

ing α-level is given by the lαrα-increments ∆pαi,l and ∆pαi,r as

pαi,l = pαi+1,l − ∆pαi,l

pαi,r = pαi+1,r + ∆pαi,r.
(2.20)

For α = 1, only a right increment exists. The increments can either be calcu-
lated from a given fuzzy number, based on the differences between the α-levels,
or they can be used to define the fuzzy number from a given peak point by
calculating subsequent α-levels from predefined increments. With the second

2Note that only for ∆pα4r = 0, the fuzzy variable in Figure 2.3 is a fuzzy number.
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2.6 Propagating epistemic uncertainty

method, which is later used to include randomness in the uncertainty model,
the convexity of the fuzzy number has to be ensured via

∆pαi,l ≥ 0 for i = 1, 2, ...Nα − 1
∆pαi,r ≥ 0 for i = 1, 2, ...Nα.

(2.21)

”

2.6 Propagating epistemic uncertainty

Similar to the goal of propagating aleatoric uncertainty in Section 2.4, the
goal of propagating epistemic uncertainty is to calculate the uncertain target
output f based on the uncertain input parameter p̃, such that the resulting
uncertain target output reads f̃(p̃) = {f(p), µf̃ (f(p)) ∀ p ∈ P }. This target
output can be any quantity of interest of the examined model, for instance a
position or angle or something that is calculated based on the model, like in-
ternal deformation energy in a beam. With epistemic uncertainty, this means
calculating the values for the target output and the membership function µf̃ .
Epistemic uncertainty in the form of fuzzy numbers is propagated in this work
with the Graph Follower algorithm. It was developed in [Eis19b; Eis19a] and
improved for use with more complex models in [Sch22b]. The following sec-
tions summarise its function and the improvements that were produced during
this thesis.

2.6.1 Summary of the Graph Follower algorithm
The following is quoted from my previous work [Sch22b] Section 3.1. Variable
names in the text and figures have been changed to better fit this thesis.
Figures and tables have been modified to suit the format of this thesis.
“
Uncertain parameters p̃ modelled by a triangular fuzzy number, as required
for the Graph Follower algorithm, are defined by an interval p̃ ∈ [pmin, pmax]
and their associated membership function µp̃(p) ∈ [0, 1]. Only one value in the
interval has the function value 1, shown in the middle of Figure 2.4, leading
to a convex fuzzy number. To get a triangular fuzzy number, the membership
function µp̃(p) is assumed to be linear from the extremes of the interval with
the value µp̃(pmin) = µp̃(pmax) = 0 to the deterministic parameter µp̃(pdet) =
1, resulting in a triangular shape for the membership function.

Propagating this uncertain parameter through a forward dynamics simula-
tion has the goal to calculate both the resulting interval of a target output
quantity f(p̃) as well as the corresponding membership function µf at any
time, resulting in the fuzzy target output f̃(p̃). This results in an optimisa-
tion problem to find the extremes of the target output given the uncertain

17



Chapter 2 Working with uncertainty

input interval. The target output f represents a scalar quantity of interest
that is calculated from the models trajectory 𝕢(p̃, t) and the uncertain param-
eters p̃. The uncertain parameters p̃ either directly affect the target output
or indirectly affect it, by only influencing the forward dynamics 𝕢(p̃, t).

f = F (𝕢(p̃, t), p̃, t) (2.22)

To compute this optimisation on a computer, a discretisation of the prob-
lem is necessary. Using α-level cuts, it is possible to discretise the membership
function and intervals, shown in the middle of Figure 2.4 for the the α-level
cuts α = 0.0 and α = 0.5. For α = 1.0 the interval of the fuzzy parameters
reduce to a single parameter, pdet. For more details on this discretisation see
for instance [Möl00; Möl04]. The Graph Follower algorithm computes the tar-
get output envelopes using α-level optimisation. This means the intervals of
the target output function are calculated with an optimisation based on the
input’s fuzzy parameter interval, while the membership function is inferred
from the chosen α-level of the uncertain input parameter, see [Möl00]. This
can be done for a singular uncertain parameter or multiple, however, depend-
ing on the interaction of these parameters, further unintentional uncertainty
may be introduced [Möl00]. The method of propagating fuzzy uncertainty
with α-level optimisation is based on the extension principle for fuzzy num-
bers [Zad65] and Nguyen’s note on the extension principle [Ngu78] and is
detailed in e.g. [Möl04; Möl00] and only summarised briefly here. The goal
of propagating a fuzzy uncertain parameter through a model is to calculate
the fuzzy target output f̃ , which means both the numerical values f as well
as the associated membership function values µf . These can be calculated
with α-level optimisation which discretises the input fuzzy numbers with α-
level cuts and then performs an optimisation to find the extreme values of the
target output fαk for the given α-level cut αk. When the two extreme values
of the target output at a given timestep are known for a given α-level cut,
two points of the target output membership function µf are known since the
values are inherited from the membership function value of the α-level cut due
to Nguyen’s principle. The target output fuzzy number f̃ can be computed
by solving the following optimisation problem for each timestep and multiple
α-level cuts as described for instance in [Eis19b; Piv19].

f̃ (s)
αk

(p̃s,αk ) = −s min
p∈Pαk

(−sf(p)) with s = ∓1 (2.23)

Solving this optimisation problem includes the evaluation of the determin-
istic mapping of the target function fd and thus for this work the forward
dynamics simulation. The Graph Follower algorithm combines the α-level
optimisation with an approximation of the forward dynamics simulation via
Taylor expansion and post-processing steps to efficiently calculate the target
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Chapter 2 Working with uncertainty

output envelope and the target output’s membership function over time, re-
sulting in an approximation of the fuzzy target output. The process of forward
propagation of epistemic uncertainty to calculate a target output envelope is
visualised in Figure 2.4.

The Graph Follower algorithm from [Eis19b] employs two main methods
to make α-level optimisation feasible with forward dynamics. The first is
the linearisation of the forward dynamics [...] with respect to the last known
optimal parameter, allowing for quick computations of the target output at
the cost of accuracy. The second method, is the combination of storage and
post-processing. When a new parameter is found by the optimisation, the
forward dynamics are calculated with it and the target output is computed
for the entire simulation time. Both the parameter as well as its associated
target output evolution are stored in a library within one α-level. This library
of previously computed parameters and target output trajectories is used to
chose a parameter for the linearisation of the forward dynamics based on
the currently known extreme target output trajectory. The parameter p that
is associated with the currently known extreme target output trajectory is
used for the linearisation to approximate the forward dynamics and allow an
efficient optimisation. Furthermore, at the end of an α-level optimisation for a
given α-level, all target output trajectories are compared and only the extreme
values are transferred to the target output envelope. This is repeated with
several α-levels, to define the membership function value for the envelopes.
”
The process of determining the hulls is visualised in Figure 2.5. The simulation
model is an ideal planar pendulum and the scalar target function f is the
pendulum’s angle at each time node. Figure 2.5(a) shows how the optimisation
calculates different evolutions of the target function at different timesteps
for one α-level, in this case α = 0.5. Once all optimisations are done, the
post-processing examines all available trajectories and calculates the upper
(Figure 2.5(a) green circles) and lower (Figure 2.5(a) red circles) hull for this
α-level. This is repeated for multiple α-levels to obtain the result shown in
Figure 2.5(b), which shows the calculated approximation of the fuzzy target
output over time.

To summarise, the Graph Follower algorithm propagates an uncertain pa-
rameter, that is quantified as a fuzzy number p̃, though a model to calculate
an approximation of the fuzzy target output for every time node of the simula-
tion. The target output can be any scalar quantity derived from the system’s
simulation. The Graph Follower algorithm approximates the fuzzy target out-
put by discretising the input fuzzy number with α-levels and calculating the
hulls for each of these levels with α-level optimisation. Once the hulls result-
ing from the multiple α-levels are known, so is the corresponding membership
function of the target output and the fuzzy target output is approximated.
The main advantage of using he Graph Follower algorithm is the efficiency in-
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2.6 Propagating epistemic uncertainty

crease due to linearising the forward dynamics paired with a post-processing
step which improves the resulting hulls based on all previous forward dynam-
ics calculations within one α-level. For more details, see [Eis19a; Eis19b].
The main steps are summarised in the list ‘Graph Follower algorithm steps’,
including the improvements introduced in the following section.
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Figure 2.5: Visualisation of how the Graph Follower algorithm calculates the
target output hulls. Each optimisation leads to an evolution of the target
function, shown as individual lines in (a) for α = 0.5. Then, in the post
processing, the upper and lower hulls are calculated from all available trajec-
tories, green circles and red circles, respectively, resulting in the α = 0.5 hull
shown in (b). To approximate the fuzzy target output, this process has to be
repeated for multiple α-levels.

2.6.2 Improvements introduced during this thesis

The following is quoted from my previous work [Sch22b] Section 3.3. Variable
names in the text and figures have been changed to better fit this thesis.
Figures and tables have been modified to suit the format of this thesis.
“
This section details the modifications made to the Graph Follower algorithm
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Chapter 2 Working with uncertainty

in order to achieve the shown results. These modifications are necessary to
keep it computationally feasible for the complexity of the analysed system.

Reduction of evaluation points

To accomplish this [the computational feasibility of the Graph Follower al-
gorithm with the complex model], the timestep of the forward dynamics and
the Graph Follower algorithm are separated. To compute stably, the for-
ward dynamics of the leg with a geometrically exact prosthetic foot requires
a timestep of 0.001 seconds. Using the same timestep for the Graph Follower
algorithm for a simulation time of 2.0 seconds would result in 2000 α-level
optimisations for each discrete α-level envelope, meaning once for the upper
and once for the lower boundary, for every examined α-level. Additionally, for
every new optimal parameter found by the Graph Follower algorithm, a new
forward dynamics simulation is necessary to calculate the associated target
output. In the worst case, this would lead to Nα ∗ Nt ∗ 2 forward dynamics
simulations, which is computationally expensive.
To reduce this [the amount of necessary calculations], the α-level optimisation
is only performed every 100 steps of the forward dynamics simulation. This
leads to greatly reduced computational cost. The resulting envelopes are still
calculated with the forward dynamics timestep of 0.001s, resulting in smooth
trajectories. The number of required optimisations is greatly reduced at the
cost of possibly not finding all extreme trajectories. Figure 2.6 shows the
resulting envelopes for two different optimisation timesteps to compare the
effects of this reduced optimisation timestep. Table 2.1 lists the maximum
difference between the envelopes. Both simulations were performed using the
parameters for the swing configuration, described in detail in the next sec-
tion3. The difference between the two compared optimisation timesteps is
negligible for this case.

Table 2.1: The maximum difference between envelopes calculated with reduced
optimisation timestep and the same timestep as the forward dynamics simu-
lation, for upper (HU ) and lower (HL) envelope.

α-level max ∆HL max ∆HU

1.0 0.0 0.0
0.5 0.0110e-11 0.7254e-11
0.0 0.0916e-8 0.3369e-8

3This refers to Section 4.2
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Figure 2.6: “The resulting envelopes for two different α-level optimisation step
sizes in the Graph Follower algorithm. The top figure shows the results for an
optimisation every 100 timesteps of the forward dynamics simulation, while
the middle shows the results for an optimisation every 10 timesteps. The
bottom shows the difference between the envelopes for the three examined
α-levels.” Figure and caption quoted from [Sch22b].

Tolerance distinguishing optimal parameters

The Graph Follower algorithm maximises or minimises the target output func-
tion within the parameter interval. If an optimal parameter is found, it is
stored in a library and used for the approximation of the forward dynamics
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in the optimisation. The last parameter associated with the extreme target
output for the current examined [time node] is used to linearise the forward
dynamics during the optimisation. This parameter library is also used to check
whether the new optimal parameter is indeed new, by comparing it to the pa-
rameter used for linearisation. A new forward dynamics simulation is only
performed if the difference of the optimised parameter to known parameters
exceeds a percentual tolerance. This tolerance can be estimated by a sensi-
tivity analysis of the forward dynamics with respect to the uncertain input
parameter. To further reduce the computational cost, the forward dynamics
simulation is recalculated and the new target output is calculated from the
resulting trajectory only if the found optimal parameter is sufficiently different
from all previously calculated parameters. Otherwise, the stored values are
used. Ensuring the novelty of a parameter within an α-level greatly reduces
the computational cost of the Graph Follower algorithm.

Of course, this tolerance directly affects the accuracy of the target output
envelopes. This means it has to be dimensioned to fit to the examined prob-
lem. Also, multiple uncertain parameters make it more difficult to apply, since
multiple parameters do not affect the target output without interdependen-
cies. In this work, new forward dynamics calculations are performed if the
relative difference pdiff,rel between the current fuzzy parameter and the clos-
est stored parameter exceeds ptol of the deterministic value. In the case of a
simulation with multiple fuzzy parameters, a new simulation is performed if
any individual parameter difference exceeds ptol of the respective deterministic
parameter.

pdiff,rel,i = |p̃i − pBib,i|
pdet,i

(2.24)

The tolerance value ptol = 0.01% was determined experimentally. For more
precision in the choice of this tolerance, a sensitivity analysis of the target
output with respect to the fuzzy parameter can be performed.
”
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2.6 Propagating epistemic uncertainty

The main steps of the Graph Follower algorithm with the improvements are
summarised in the following list ‘Graph Follower algorithm steps’.

Graph Follower algorithm steps

1. Quantify uncertain input parameter p̃ as a fuzzy number

2. Discretise p̃ with Nα α-levels

3. Calculate deterministic forward dynamics and target func-
tion to initialise library

4. For every timestep do:
a) calculate upper hull with

fmax,tj ,αk = max(f(p,𝕢(p, t))) for p ∈ Pαk

using linearised forward dynamics and best guess from
library

b) update library with calculated extremal trajectory
c) calculate lower hull with

fmin,tj ,αk = min(f(p,𝕢(p, t))) for p ∈ Pαk

using linearised forward dynamics and best guess from
library

d) update library with calculated extremal trajectory

5. For every timestep do:
a) improve upper hull by using the maximum of all indi-

vidual target function calculations from the library at
the current time node

b) improve lower hull by using the minimum of all individ-
ual target function calculations from the library at the
current time node

2.6.3 Limitations of the Graph Follower algorithm

The following is quoted from my previous work [Sch22b] Section 3.4. Variable
names in the text and figures have been changed to better fit this thesis. Fig-
ures and tables have been modified to suit the format of this thesis.
“
Before examining the scenarios simulated in this work, the limitations of the
Graph Follower algorithm are briefly summarised. The goal of propagating
fuzzy input parameters through a model, is to calculate the target output fuzzy
number. This includes the interval of the target output f and the associated
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membership values µf̃ . As detailed above, the Graph Follower algorithm uses
α-level optimisation and a linearisation of the forward dynamics with respect
to the fuzzy input parameter to efficiently calculate the target output en-
velopes for multiple α-levels, where the membership function is derived from
the current α-level, resulting in an approximation of the target output fuzzy
number. The α-level optimisation with forward dynamics imposes limitations
on the accuracy of the resulting envelopes. To work precisely, the α-level
optimisation requires a global optimiser and precise calculation of the target
output, see [Möl04]. However, global optimisation is computationally expen-
sive and the accurate calculations of the forward dynamics required for the
exact target output calculation are also computationally expensive with such
a complex model. Thus, to be feasible, the Graph Follower algorithm only
approximates global optimisation, by using Matlab’s MultiStart function with
ten starting points. This significantly increases the result quality with an ac-
ceptable increase in computation time, compared to using fmincon with just
one starting point. The linearisation of the forward dynamics with respect
to the fuzzy parameter introduces more inaccuracy. Both of these limita-
tions can lead to an overlap of α-levels. The modifications necessary for the
Graph Follower algorithm to work with the complex model of the human
leg with a deformable prosthesis, also require a trade-off between accuracy
and computational cost. The separation of the timestep of the forward dy-
namics simulation and the α-level optimisation greatly reduces the amount
of necessary optimisations but also reduces the chances to find extremising
parameters. Also, the tolerance when comparing new parameters to stored
parameters can reduce accuracy if it is chosen to large, however, it greatly
reduces the computational cost of the modified Graph Follower algorithm.
Nonetheless, the modified Graph Follower algorithm, as is used here, pro-
duces an approximation of the target output fuzzy number for the complex
multibody system of the human leg with a predeformed geometrically exact
beam prosthetic foot. Furthermore, these limitations can be reduced or even
become negligible by increasing the available computing power. Also, if the
precise membership function value of the target output is not required, the
trajectories of the target output of the individual α-levels can be combined to
get an accurate global envelope of the target output, providing information on
the extreme values of the target output based on the fuzzy input parameter.
Thus, even with limitations, the modified Graph Follower algorithm provides
valuable information about how epistemic model parameters affect a desired
target output for a highly complex multibody system with flexible and rigid
bodies, allowing for a quicker examination of the uncertainties effects than
simulating many different sets of parameters.
”
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2.7 Polymorphic uncertainty

2.7 Polymorphic uncertainty

This section is the main contribution of this thesis to the methodology of deal-
ing with uncertainty. To expand fuzzy numbers to polymorphic uncertainty
that can also model variability, fuzzy random variables (FRVs) as described in
[Möl07] are used here, which in turn are based on [Kwa78; Kwa79; Möl04]. It
should be noted that in the literature, the distinction between fuzzy random
variables and random fuzzy variables is not always clearly defined.

Fuzzy random variables are introduced in [Kwa78] as random variables whose
values are not real numbers but fuzzy numbers. They are often used to han-
dle linguistic label information in statistics or to represent uncertainty about
classical random variables. Thus, a fuzzy random variable can be regarded
as a fuzzy set of traditional random quantities, each one carrying a certain
membership degree [Gud98]. According to [Cou09] there are multiple defini-
tions of fuzzy random variables, see for instance [Kwa78; Pur93; Kru87], and a
unified approach is suggested in [Krä01]. In [Möl04], a fuzzy random variable
˜̂
P is defined as convex fuzzy number realisation of a random event. In other
words, a realisation or one sample of a fuzzy random variable ˜̂

P is a convex
fuzzy number p̃. This means that every random event ω in the space of all
random events Ω is assigned a fuzzy realisation p̃ from the set of all convex
fuzzy variables 𝔽. This is the formulation that is used in this work.

˜̂
P (ω) : Ω → 𝔽 | ω ∈ Ω (2.25)

Random fuzzy variables (RFV) are type 2 fuzzy variables. They are defined
with mathematical possibility theory and are used to represent the entire in-
formation associated with a measurement result and an internal possibility
distribution and an external possibility distribution called membership func-
tions. The internal distribution is the uncertainty contribution due to the
systematic uncertainty while the bounds of the RFV are due to the random
contributions.

The difference between FRVs and RFVs lies in their definitions and appli-
cations. Fuzzy random variables are defined as the fuzzy perception of an
unobservable real-valued random variable [Ber21]. They are actually a de-
scription of the fuzziness contained in a traditional random variable often
called the original [Ber21]. On the other hand, random fuzzy variables are
used in the context of modelling a given random experiment which produces
fuzzy sets of a metric space [Ber21]. This random fuzzy set is defined as the
“levelwise extension” of the notion of random sets in real-based spaces or as
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Figure 2.7: “A fuzzy random variable, with randomised lαrα-increments, based
on [Möl07].” Figure and caption quoted from [Sch24a].

random elements defined in the spaces of fuzzy sets [Ber21].

The main reason to use FRVs is the improved Graph Follower algorithm.
Due to its capability of efficiently propagating fuzzy numbers through the
complex multibody model simulation, it makes sense to expand the uncer-
tainty in a direction that will incorporate this algorithm. In polymorphic
uncertainty simulations, it is common to reduce the uncertainty step-wise.
FRVs, as described in [Möl04], are a polymorphic uncertainty model, that,
when samples are generated and the randomness is thereby collapsed, result
in fuzzy numbers which can then be further examined with the Graph Follower
algorithm.

2.7.1 Fuzzy random variables (FRV)
In this work, FRVs are used to quantify polymorphic uncertainty. Based on
the lαrα-discretisation introduced in Section 2.5.2, a method to combine the
variability of random numbers and the lack of knowledge from fuzzy num-
bers is described, which can then be propagated with the newly developed
FRV-Graph Follower algorithm. The following is quoted from my previous
work [Sch24a] Section 2.2. Variable names in the text and figures have been
changed to better fit this thesis. Figures and tables have been modified to
suit the format of this thesis.
“
A fuzzy random variable is visualised in Figure 2.7. To include random-
ness in the uncertainty model, the lαrα-increments from Equation 2.20 in
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Section 2.5.2 are randomised, see [Möl07]. This is visualised in Figure 2.7.
The lαrα-increments are governed by a probability density function Fpdf(∆p),
while the convexity condition from Equation 2.21 holds. To generate a re-
alisation of the fuzzy random variable, a random peak point ppeak is drawn,
based on the governing probability function Fpdf(ppeak). Then, the increments
for the next lower α-level are drawn from the probability function Fpdf(∆p)
governing them, while ensuring the convexity condition. This condition in-
troduces a correlation between the increments, but is unavoidable to ensure
convexity of the resulting fuzzy number, see [Möl07]. This method results in
random intervals [Pαil, Pαir] for every α-level and the random membership
function µP̃ (p). Then, a random fuzzy number ˜̂

P is described by the random
sets Pαi

˜̂
P = (Pαi = [Pαi+1l − ∆Pαil, Pαi+1r + ∆Pαir] | αi ∈ [0, 1);

Pαi = [Pαpeak , Pαpeak + ∆Pαir] | αi = 1).
(2.26)

”
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Chapter 2 Working with uncertainty

2.7.2 Fuzzy random variable Graph Follower Algorithm (FRV-GFA)

The following is quoted from my previous work [Sch24a] Section 4.3 & 4.4.
Variable names in the text and figures have been changed to better fit this
thesis. Figures and tables have been modified to suit the format of this thesis.
“
To enable the propagation of polymorphic uncertainty in the form of fuzzy ran-
dom variables (FRVs), the realisations of which are fuzzy numbers as described
above, a new algorithm is required to propagate this uncertainty through
our dynamic model. The steps of our algorithm are shown in Figure 2.8.

Figure 2.8: “The nested steps
of the FRV-GFA developed
within the project 14.” Fig-
ure and caption quoted from
[Sch24a].

Similar to most algorithms dealing with
polymorphic uncertainty, a nested algorithm
is used [Möl04]. This means that the uncer-
tainty is reduced from one step to the next,
until a deterministic evaluation of the model
with deterministic values is possible. Then
the uncertainty is "reassembled". The main
steps are the sample generation, where Ns

samples are generated from the FRV, exam-
ination of the fuzzy number samples with the
Graph Follower algorithm, and finally calcu-
lating and fitting probability density func-
tions to the target output hull samples. The
steps are described in more detail in the fol-
lowing paragraphs.

Sample generation In general, with aleatoric
uncertainty, a large number of samples is
generated, then the target quantity is cal-
culated individually for each sample and fi-
nally distributions are fitted to the resulting
data. Similarly, the proposed algorithm gen-
erates Ns samples for the uncertain param-
eter, using the previously described lαrα-
discretisation from [Möl07]. Currently, all
probability distributions in this work are as-
sumed to be normal distributions4

Fpdf(p) = 1
σ

√
2π

e− 1
1 ( p−µ

σ )2
(2.27)

4This refers to the results presented in [Sch24a]. This work expands the FRV-GFA to
include other distributions, shown in Section 5.7.1.
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2.7 Polymorphic uncertainty

defined by the mean µ (not to be confused with the membership function
µp̃(p)) and the standard deviation σ. Each sample is generated by calculating
a random peak point ppeak, see Figure 2.3, and adding or subtracting a random
∆p to or from the deterministic parameter value pdet.

ppeak,i = pdet + Fpdf(p) · 0.1 · pdet︸ ︷︷ ︸
∆pα=1

(2.28)

The random selection of ∆x for the sample i is based on the probability density
function Fpdf(p) in Eq. (2.27) with a mean of µ = 1 and a standard deviation
of σ = 1. The PDF’s value is drawn and then multiplied by 0.1 · pdet, relating
the scale of ∆p to the parameter’s magnitude. In the future, the calculation
of ppeak and the governing probability density function Fpdf(p) can be based
on measurements. While lower α-levels use the same distribution as Fpdf(p)
(with the same mean and standard deviation), the deviation ∆p is slightly
different with

∆pα<1 = Fpdf(p)0.1pdet

Nα
. (2.29)

The division by the number of α-levels allows for independent control over the
expected width of the generated samples of the FRV at α-level zero and the
number of α-levels that are examined. Starting from the peak point xpeak the
steps are

pl,k−1 = pl,k − ∆pl,k and pr,k−1 = pr,k + ∆pr,k. (2.30)

To ensure convexity, as required for a fuzzy number, the increments have
to be greater than zero, ∆pl,k > 0 and ∆pr,k > 0, see Eq. (2.20). In case a
randomly drawn increment does not fulfill this requirement, it is regenerated
by redrawing the Fpdf(p) value. While this introduces a correlation between
the increments, it ensures the convexity of the fuzzy number samples. It should
be noted, that this generation truncates the normal distribution currently
chosen. Other distributions are of course an option, however, the normal
distribution was chosen for this work due to its simplicity and easy validation.

Epistemic analysis Since each individual sample is a fuzzy number, the epis-
temic analysis can be performed with the previously described Graph Follower
algorithm. This returns a fuzzy number for the target output quantity for ev-
ery examined [time node]. Nested within the Graph Follower algorithm, the
forward dynamics of the model are computed, which is the computationally
most expensive step.

Reassembling target output FRVs Once the epistemic analysis of every sam-
ple is completed, the increments can be calculated for the samples and for
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Chapter 2 Working with uncertainty

every [time node]. Then a probability density function can be fit to the avail-
able data, using Matlab 2023b’s fitdist function, resulting in a FRV of the
target output function for every [time node]. It should be noted, that for
consistency, a normal distribution is fit to the data5 This can be modified in
further examinations.

2.7.3 Reduction of computational load

[...]

Since stochastic analyses require a large number of samples, the computa-
tional cost [of the improved Graph Follower algorithm] needs to be reduced
further. To make the load manageable, a grouping of samples is performed
after the sample generation before the epistemic analysis starts. All samples
are mapped onto a number of discrete values in the examined parameter in-
terval. This greatly reduces the variability in the parameter and therefore
the number of parameters for which calculations are necessary. Currently,
the parameter interval (from smallest to largest sample) is mapped onto 120
discrete points, resulting in a difference of approximately 0.1% · pdet between
these points6. Then, the forward dynamics can be calculated for the pre-
defined sample points. This has two advantages. Firstly, it is ensured that
all samples lead to a viable forward dynamics simulation. Since a normal
probability distribution is in theory infinite, too extreme values for the sim-
ulation’s parameters might prevent the implicit Newton–Raphson solver in
the variational integrator from converging to a solution. In case a sample is
so extreme, that the Newton–Raphson solver does not converge, a new sam-
ple would have to be generated. So far, this has not occurred. Secondly, no
further forward dynamics calculations are necessary after the grouping. Dur-
ing the epistemic analysis, if an optimal parameter is found, it can also be
mapped onto the predefined points, similar to the novelty check in the Graph
Follower algorithm, eliminating the necessity of recomputing the forward dy-
namics and reducing the computational cost. Of course this comes at the
price of a certain decrease in accuracy. However, we found the reduction in
the computational cost greatly outweighs the acceptable reduction in accu-
racy. Furthermore, by increasing the previously defined discrete values, direct
control of the algorithm’s accuracy is possible. Due to the precomputation
of the forward dynamics and grouping of samples, it would also be possible
to eliminate some of the required optimisations, if the sample fuzzy number
bounds are already known from previous optimisations. However, this requires

5This refers to the results as presented in [Sch24a]. This thesis expands the FRV-GFA
to include other distributions, shown in Section 5.7.1.

6This refers to the results as presented in [Sch24a]. This work uses different parameters
and simulation scenarios, shown in Section 5.7.1
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2.7 Polymorphic uncertainty

advanced use of data storage and further investigation.
”

It should be noted, that currently the sample generation and fitting of the
target output’s lαrα-increments is performed with Matlab 2023b’s fitdist func-
tion while assuming a normal distribution of the increments. This is of course
an assumption and not necessarily the case. As mentioned in Section 2.3, there
are many other distributions. For instance, the algorithm was also tested using
the beta distribution for α ≤ 1 and the Normal distribution only for the peak
points, see Section 5.7.1. While changing the distribution from an infinite
one to one that is limited to [0, 1] is not a problem for the sample generation
and avoids the truncation necessary with the Normal distribution, when used
during fitting in the FRV-reassembly the question arises, how to normalise the
results to that interval. For one, this has to be performed for every time node.
Then, each side has to be normalised (the left and right increments). And
then the question is, whether it should be normalised relative to the maxi-
mum (or minimum) of each α-level or to the maximum of that time node. So
while other distributions are possible and can be implemented, there are open
questions regarding their use. However, this can be changed in the future by
incorporating other distributions or more advanced fitting methods, see for
instance [Gho19a] and does not impede the algorithm’s idea or performance.

2.7.4 Improvements to FRV-GFA

As mentioned, the main issue with uncertainty simulations for aleatoric un-
certainty, is the large sample size required to achieve accurate results. Pairing
this requirement with the computationally expensive Graph Follower algo-
rithm leads to unfeasibly expensive computations. Thus, more efficiency in-
creases are necessary.

Grouping of samples Similarly to the parameter novelty check introduced
to the Graph Follower algorithm in [Sch22b], which limits the recalculations
of the forward dynamics during the Graph Follower algorithm by in essence
discretising the possible inputs based on past results, the samples required
for the aleatoric part of the FRV-GFA can be grouped by mapping them to
specific points on a discretised grid of the parameter space, visualised in Fig-
ure 2.9. It should be noted, that the convexity of the fuzzy number samples is
ensured during the sample generation process, described in Subsection 2.7.2,
by calculating all lαrα-increments and ensuring they fulfil Eq. (2.21). This
process can be put within the category of binning. In essence, binning de-
scribes the process of grouping data points into discrete bins. In effect, the
interval between the smallest and largest value of an uncertain parameter is
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discretised into Np-disc points. Now all samples can be remapped to the mid-
dle of the interval defined by two neighbouring points. To determine how
many points should be used to discretise parameters, a sensitivity analysis
can be used [Sal08], though the available computing power is also a determin-
ing factor. The process of grouping samples bears similarities to the Latin
Hypercube sampling method, described in a paragraph in Section 2.4. The
main difference to Latin Hypercube sampling is, that here the variable is dis-
cretised by equidistant points, while Latin Hypercube sampling defines the
intervals to have equal probability. Since the goal of this work is to demon-
strate the capabilities of the FRV-GFA, and since Latin Hypercube sampling
may not be applicable to all uncertainty types, the more general approach of
discretising the input domain was chosen. Using this, the forward dynamics

Figure 2.9: The top image shows a selection of the generated samples of the
fuzzy random variable p. Each sample is a fuzzy number. The horizontal axis
shows the 30 grid points used to discretise the parameter p for the grouping
performed in the bottom image. The vertical line highlights the center of an
interval and how a sample point not on the grid (top red circle) is remapped
to the grid points in the grouping process (bottom red circle).

calculations can be performed on the number of points used for the parameter
discretisation Np-disc in advance and stored in a library Qlib and the target
function can also be calculated for each parameter value and stored in a li-
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2.7 Polymorphic uncertainty

brary flib. Then, the α-level optimisation is performed for each interval from
the grouping using the Graph Follower algorithm. However, when an optimal
parameter is found, instead of recalculating the forward dynamics and target
output, it is mapped to the grid and the results can be looked up in the library
or, depending on the tolerance check within the Graph Follower algorithm, a
new forward dynamics simulation is calculated and added to the library. This
greatly reduces the calculation effort, while still allowing for fine tuning of
the result’s accuracy by changing the number of points, used to discretise the
input parameter. However, this still requires an optimisation for each sample
and each α-level of the sample.

Separation of processes and smart storage As can be seen in Figure 2.9,
due to the grouping, some of the samples overlap. As a reminder, note that
each fuzzy number is described by a set of intervals and the respective α-level
value of that interval. To propagate the uncertainty for a single fuzzy num-
ber, the α-level optimisation is performed for each α-level on the associated
interval. However, the α-level value is only used after the optimisation to
approximate the target output fuzzy number. Due to the stochastic uncer-
tainty in the FRV-GFA and the subsequent overlap of fuzzy number samples,
multiple optimisations on the same interval are performed, if the samples are
treated individually. This is inefficient, for obvious reasons. To avoid this, the
different steps in the FRV-GFA can be separated.
The idea is to separate the samples, with their respective parameter intervals,
and the optimisations. This avoids unnecessarily repeating optimisations re-
quired for the propagation of the epistemic uncertainty of input parameter
intervals that show up in multiple samples after the α-level discretisation and
grouping. Then, after the optimisation is performed on each interval and the
resulting target output envelopes for that interval are known, they can be
assigned to each sample and the target output FRV can be reassembled. The
number of possible intervals is a combinatorial problem of choosing a distinct
objects out of B possible objects and is given by the binomial coefficient

(
B

a

)
= B!

a!(B − a)! . (2.31)

In our case, a = 2 for the bounds of the interval and B = Np-disc, thus
Eq. (2.31) can be calculated with the sum of first integers as well

(
Np-disc

2

)
= Np-disc!

2!(Np-disc − 2)! =
Np-disc∑

k=1

k = Np-disc(Np-disc + 1)
2 . (2.32)

In the example shown in Figure 2.9 with Np-disc = 30 (shown as blue dots
in the p-axis) a total of 435 intervals are possible. This means, instead of
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performing an α-level optimisation for every α-level of every sample, Ns ∗ Nα

α-level optimisations in total, a maximum of Np-disc(Np-disc+1)
2 optimisations

are required. This greatly reduces the total computational cost, while al-
lowing a large number of samples for accuracy in the stochastic uncertainty
propagation. As shown in Section 2.4, the number of required samples to
accurately represent the underlying aleatoric uncertainty can get quite large.
Since for α = 1 the interval bounds coincide, no optimisation is necessary
and the forward dynamics and target output can be calculated and stored for
later use directly. Note also, that not all possible intervals are present in the
generated samples. To improve efficiency, an intermediate step ensures that
only intervals that are required for at least one sample are considered in the
optimisation, further reducing computational cost.
Now that all required intervals are known, the optimisation is performed re-
sulting in the upper and lower envelope for the target output for every time
node and for each interval. In a final step, the envelopes are associated with
the samples and their α-levels and the resulting FRV of the target output
is reassembled. In summary, this approach of grouping the samples greatly
reduces the number of required optimisations and unlinks this number from
the sample size. This allows for efficient computation of many samples, which
is critical for the stochastic evaluation. The worst case for the number of
optimisations required Ω for one uncertain parameter depends on number of
intervals as calculated in Eq. (2.32) and on the number of time nodes Nt mul-
tiplied by two in order to account for the upper and lower hull optimisations

Ω = 2Nt

(
Np-disc(Np-disc + 1)

2

)
. (2.33)

In the case of multiple uncertain parameters, the worst case for optimisations
is Eq.(2.33) applied to every parameter, with the respective number of dis-
cretisation points, and multiplied with each other. It is obvious, that this
can lead to very large numbers very quickly as shown in Figure 2.10, which
again highlights the main issue with uncertainty simulations, namely the as-
sociated high computational cost. From Eq.(2.33) it is evident, that the main
factors governing the computational cost of the proposed algorithm are the
number of intervals and the number of points used for the discretisation of
the parameter. This is examined in Figure 2.10 by varying the number of
generated and grouped samples Ns, which affects the number of intervals that
have to be considered, and the number of points used for the discretisation
of the uncertain parameter space Np-disc. As expected and shown on the left,
the number of possible intervals is independent from the number of samples
and drastically increases with the number of points used for the discretisation.
Also, as shown in the middle, the number of occurring intervals, that is the
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interval is present in at least one sample, is dependant on both the number
of samples and the number of points used for the discretisation. If not a lot
of samples are generated, not many intervals will occur. On the other hand,
the number of relevant intervals rises quickly with increasing sample size but
flattens after a sufficiently large sample size is present. This can be used
as an indication for the minimum required sample size, given the number of
parameters and discretisation points. On the right side of Figure 2.10 it is
noteworthy, that the ratio of the occurring intervals to the worst case of all
possible intervals drastically decreases with increased number of samples and
number of discretisation points. This gets even more drastic with multiple
parameters. However, due to the nature of sample creation, not all combina-

Figure 2.10: Visualisation of how the number of samples and number of points
used for the discretisation result in the number of intervals that have to be
optimised. Yellow indicates a high number of intervals. From left to right, all
possible intervals are shown, then the intervals that are present in the samples
and finally the ratio of present intervals to all possible intervals.

tions of intervals will show up in the samples, greatly reducing the number of
required optimisations. Furthermore, it should be highlighted that Eq.(2.33),
which calculates all possible intervals that may need to be optimised, is inde-
pendent of the number of generated samples. This means the deciding factor
on how many optimisations need to be performed in the worst case no longer
depends on the number of samples. In practice, the number of intervals that
are present in the samples is much smaller than the number of possible inter-
vals. This is accounted for in the algorithm only generating an entry in the
dictionaries, which are used for data storage, if at least one sample has the
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respective interval.

The data storage is implemented using Matlab 2023b’s dictionary func-
tions. Dictionaries map a keys to any type of data. The main advantage is,
that different types of data can be synchronised to the same key across mul-
tiple dictionaries. In its current implementation, there are dictionaries for all
intervals that are present in at least one sample, the upper and lower hulls, the
parameters that lead to extremal trajectories and the extremal trajectories, in
short, the same output as is produced by the Graph Follower algorithm. As
keys, the left and right interval bounds are used. Since the keys are crucial
in keeping the data synchronised, a separate function handles the conversion
of interval bounds to keys. The reverse operation can be performed by a dic-
tionary storing the intervals with the respective key. This works for a single
uncertain parameter as well as for multiple parameters. Another huge ad-
vantage of this method is, that if not enough samples are used in the initial
simulation, more can be added with ease. As long as the dictionaries are
saved and the grouping of samples does not change, any number of samples
can be added to the existing ones. Then the grouping needs to be performed
again to map them onto the same intervals from the previous grouping and
the reassembly has to be performed. If new intervals are present, these have
to be optimised first. These two steps take a fraction of the computational
effort of the forward dynamics calculations and optimisation, even for a very
large number of samples. (This functionality can be added to the algorithm
but is not yet implemented.) It should be noted, that with so many samples,
the data storage aspect becomes an issue. Since all values are stored with
double precision, the standard in Matlab 2023b, and each double precision
data requires 8 bytes, the memory Dmemory required for such an array with
sizes a1, a2, ..., aI in Gigabyte (GB) is

Dmemory =
∏

i
ai

(1024)3 . (2.34)

For example, for 100000 samples (a1 = 100000), 2000 time nodes (a2 = 2000),
5 α-levels (a3 = 5), which is enough to store only the hulls (a4 = 2) of
the simulation, a total of 1.86 GB in memory is required. This does not yet
account for the storage of the dictionaries for the forward dynamics, the target
function, various other simulation parameters or intermediate data during the
optimisation. As mentioned in Section 2.4, stochastic accuracy requires a lot
of samples, so the required memory can grow very quickly beyond the RAM
capacities of normal desktop computers or laptops. The dictionary approach
introduced here for the FRV-Graph Follower algorithm can be modified to
store data on the hard drive instead of RAM if necessary.
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Interaction between GFA novelty check and FRV-GFA sample grouping One
question that needs to be answered, is how the novelty check introduced in
[Sch22b] interacts with the grouping of samples in the FRV-GFA, developed
here. It may seem, that if all the forward dynamics trajectories are precal-
culated for the existing interval centres, there is no need for the optimisation
within the Graph Follower algorithm. A simple comparison of all target out-
put evolutions from the already known forward dynamics trajectories would
suffice. However, the goal of the precalculation of the forward dynamics is
to skip unnecessary recalculations during the optimisations while at the same
time providing better linearisation points for the Taylor approximation used
in the optimisation. The novelty check then ensures, that if a new optimal pa-
rameter is found and the difference to all currently known parameters, stored
with their forward dynamics trajectories and target outputs, is too large, a
new forward dynamics trajectory is calculated based on the new optimal pa-
rameter. This is then added to the dictionary, improving the dictionary and
reducing future forward dynamics calculations. Of course, the grouping dis-
cretisation and the tolerance in the novelty check interact. If the grouping
is finer than the novelty check tolerance, no new forward dynamics calcula-
tions will ever be necessary, while if the grouping is much coarser than the
tolerance, most optimisations will incur a forward dynamics calculation. This
allows for a fine tuning of computational effort and independent control over
the two options, meaning they can be modified to be ideal for a given prob-
lem. In the current implementation, the tolerance is chosen slightly smaller
than the grouping discretisation in order to demonstrate the interaction, such
that sometimes a new calculation of the forward dynamics is triggered and
sometimes the dictionary entries are used.

Improving hulls based on previous knowledge One issue pointed out in [Sch22b]
for the Graph Follower algorithm, is that due to the simplifications necessary
to consider uncertainty for such a complex non-linear multibody model with
rigid and flexible bodies and the lack of efficient global optimisation algo-
rithms, some errors are visible in the hulls, see Figure 2.11(a). These show up
as overlapping hulls, which obviously is not correct. When an optimisation is
performed on an interval, the resulting value cannot be less optimal than the
value obtained from performing the optimisation on any of its subintervals.
Since the intervals for the α-level optimisation are derived from the α-level
cuts and Eq. (2.19) holds ensuring the convexity of the fuzzy number, the
results for the target output hulls from lower α-levels have to be at least as
large or small as the result from the higher α-level, depending on whether the
upper or lower hull is currently being calculated respectively. In addition, the
description for fuzzy random variables used here, see Section 2.7.1, requires
the increments to be larger than or equal to 0, to fulfil the convexity condi-
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Figure 2.11: Visualisation of how the target output hulls can be improved for
one sample. In (a) the hulls overlap in the shown section of the target output
evolution at t = 0.32s due to various simplifications required for the Graph
Follower algorithm to work with such a complex model. By postprocessing
the hulls and checking for intersections, they can be fixed as is shown in (b).

tion of fuzzy numbers in Eq. (2.21). If the hulls of two α-levels intersect, an
increment would be negative and the convexity condition would be violated.
Thus, to prevent this in the reassembly of the FRV, all of the target output
samples are passed through a filter function, which goes from the highest α-
level (α = 1) to the lowest (α = 0) and through all time nodes and checks
whether the increments are negative. If a negative increment is detected, its
position (time node and sample) is stored, and that specific hull value is set
to the same value as the hull of the previous α-level, based on the assumption,
that the optimal trajectory of the lower α-level is at least as small or large,
depending on whether the lower or upper hull is examined respectively, as that
of the previous, higher α-level, resulting in Figure 2.11(b). While this is not
a perfect solution to the problem of lacking a computationally efficient global
optimisation algorithm, it is a very efficient way to improve the results from
the available data and simultaneously ensures that the convexity condition is
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satisfied for the target output FRV.

The main steps of the FRV-GFA are summarised in the list ‘FRV-
GFA steps’.

FRV-GFA steps

1. Generate Ns samples discretised with Nα α-levels for
the fuzzy random parameter ˜̂p

2. Group the samples into
(

Np-disc
2

)
intervals

3. Create a unique key for every interval in the samples

4. Create dictionaries based on the keys

5. Use the Graph Follower algorithm to find hulls for the
intervals for all keys

6. Improve hulls with postprocessing to ensure convexity
of the hulls

7. Assign the hulls to the respective sample using the
keys and dictionaries

8. Calculate the deltas of the samples

9. Fit PDF to the deltas or the target function

2.7.5 Further possible improvements

Finally, there are some improvements that are currently not possible due to
the limitations of the software used in the current implementation.

Parallelisation Once the samples are generated and grouped, the intervals
on which the α-level optimisation has to be performed are known. Since
there is no reason to perform the optimisation on the intervals sequentially,
an obvious improvement would be parallelising the optimisations. However,
part of the model implementation uses CasADi [And19] in the differentiations
required for the equations of motion and the linearisation step of the the Graph
Follower algorithm. Currently, when paired with Matlab 2023b, this prevents
parallelisation, both for the optimisation itself and the process of optimising
on all intervals. However, the use of dictionaries would be ideally suited for
parallelisation and this should be a focus of future improvements.

41



Chapter 2 Working with uncertainty

Sampling methods As is known from other stochastic applications, the main
issue is the number of samples that need to be considered. In the current
implementation, the uncertainty is assumed and not based on real world mea-
surements. Depending on the application of the algorithm, the sampling can
be improved by focussing it on certain areas in the sample space or using more
advanced sampling methods as introduced in Section 2.4. Especially Latin Hy-
percube sampling may provide a large decrease in computational effort and is
already similar to the current implementation.

Inclusion of contained intervals in optimisation Another option to improve
results, is to sort the intervals, and start from the smallest with the optimi-
sation. Then any optimisations performed on a larger interval can use the
results of the previous one for initial guesses, trajectories etc. This would
require some modification of the GFA and some way to sort or cross-reference
intervals. The sorting of intervals may be problematic with multiple parame-
ters. While dictionaries should work for this as storage, cross-referencing the
intervals likely requires more advanced storage methods.

Summary

In summary, the Graph Follower algorithm was substantially improved by in-
creasing its computational efficiency. This allows its use for propagation of
epistemic uncertainty in the form of fuzzy numbers for more complex systems
than before. Furthermore, a new algorithm for propagating polymorphic un-
certainty in the form of FRVs was proposed and its computational efficiency
was increased further.
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Human gait

This thesis examines the propagation of polymorphic uncertainty through a
simulation of two distinct gait phases of a human leg with a prosthetic foot. To
be able to model the human leg accurately, some knowledge about its anatomy
and the process of walking is necessary. Sections 3.1 and 3.2 introduce the
human leg anatomy and the human gait cycle. Section 3.4 summarises how
this is represented in the model. Section 3.5 outlines the process of measur-
ing human gait as is necessary to understand the consideration of epistemic
uncertainty in this process as proposed the journal publication [Sch24b]. The
development of methods to include uncertainty and examine its effects is de-
scribed in Section 3.7. Epistemic uncertainty in the form of triangular fuzzy
numbers in the marker positions and its effect on subsequent joint angle cal-
culations has not yet been considered. This chapter is partly based on the
student theses [Alj20; Hei21; Sch19] and the journal paper [Sch24b].

3.1 Anatomy of the human leg

This section summarises the anatomy of the human leg. For a more detailed
description of human anatomy and movement see [Lip06; Pal11]. This work
examines the effects of uncertainty in a foot prosthesis simulation, thus be-
fore detailing the models involved, the function of the ankle-foot complex is
briefly described. Later on, the effect of marker position errors on subse-
quent calculations is described, requiring a marker model. This model relates
anatomical positions to the markers so, for reference, Figures 3.1, 3.2 and
3.3 from [Big23] are included and visualise the bones with their anatomical
names. For the muscles, Figures 3.4, 3.5 and 3.6 from [Big23] are included.

The human leg is subdivided into three segments, the thigh, the shank and
the foot, which are connected by joints to allow for movement. The hip joint is
a ball-and-socket joint, allowing for the movements flexion/extension, abduc-
tion/adduction and internal/external rotation. It is considered the only true
ball-and-socket joint in the human body [Whi14]. It is formed by the pelvis
(socket) and the head of the femur (ball), see Figure 3.1. The femur is the
longest bone in the human body and forms the thigh, with the proximal hip
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Figure 3.1: The femur and patella bones of the human leg. Copied from
[Big23] without adaptation which is published under the CC-BY-SA 4.0 li-
cense [CCBYSA]. Therefore this figure is exempt from the copyright covering
this thesis.

joint and distal knee joint. The knee joint is formed by the femur and tibia,
while the patella is part of the patellofemoral joint [Whi14]. During normal
gait, the knee joint’s main movements are flexion and extension, though the
ligaments involved form a four-bar-linkage and a slight external rotation at
full extension can be observed, known as the screw-home mechanism [Whi14].
The shank itself consists of two bones, shown in Figure 3.2, the load bearing
tibia and the fibula, which helps stabilise the ankle joint. This joint is formed
between the tibia in the shank and the talus in the foot and has only one main
motion, namely dorsiflexion/plantarflexion. These correspond to flexion and
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3.1 Anatomy of the human leg

Figure 3.2: The tibia and fibula bones of the human leg. Copied from
[Big23] without adaptation which is published under the CC-BY-SA 4.0 li-
cense [CCBYSA]. Therefore this figure is exempt from the copyright covering
this thesis.

extension in other joints. Of course, the foot has other movement capabilities.
However those are in the subtalar joint not in the ankle as [Whi14] points out,
and cannot be distinguished during gait analysis and thus the foot’s motions
are usually referenced with the ankle/subtalar complex. The foot bones are
divided into three groups, namely, the tarsals, the metatarsals, and the pha-
langes, see Figure 3.3. The tarsals are seven bones that form the ankle and
the heel. The largest tarsal bone is the calcaneus, which bears most of the
body weight when standing. The metatarsals are five long bones that form
the arch of the foot and connect to the toes. The phalanges are 14 small bones
that make up the digits of the foot where each toe has three phalanges, except
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Figure 3.3: The bones of the human foot. Copied from [Big23] without adapta-
tion which is published under the CC-BY-SA 4.0 license [CCBYSA]. Therefore
this figure is exempt from the copyright covering this thesis.

for the big toe, which has two. In total, each leg consists of 30 bones (with 26
of them being in the foot) and not counting the pelvis.

Walking is a complex activity that engages about 200 muscles in the body
[Cha94]. Often a muscle is attached at its origin point to one bone, which does
not move during muscle contraction, over a larger area and then narrows into
a tendon at its other end, connecting to the moving bone of the joint at the
muscle insertion point. While ligaments and tendons are similar, as a general
rule they can be distinguished by what they connect. Ligaments connect two
bones while tendons connect a muscle to a bone [Whi14]. While most muscles
have multiple actions, the main actions for flexion and extension on each joint
are briefly summarised from [Whi14], since those are the largest movements
during normal gait. Flexion of the hip joint is driven by the Psoas major,
the Iliacus, the Sartorius and Rectus femoris, the later of which is part of the
quadriceps group, shown in Figure 3.4. Extension of the hip is carried out by
the Gluteus maximus. Knee extension is driven by the quadriceps, a group of
the four muscles, which combine into the quadriceps tendon, see Figure 3.5.
The group consists of the Vastus medialis, the Vastus intermedius, the Vastus
lateralis and Rectus femoris, while the knee flexion is mainly carried out by
the hamstrings, the Semimembranosus, the Semitendinosus and the Biceps
femoris. Dorsifelxion of the foot is performed mainly by the Soleus, while
plantarflexion is mainly driven by the Tibialis anterior, shown in Figure 3.6.
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3.1 Anatomy of the human leg

Figure 3.4: The gluteal muscles responsible for moving the femur. Copied
from [Big23] without adaptation which is published under the CC-BY-SA 4.0
license [CCBYSA]. Therefore this figure is exempt from the copyright covering
this thesis.

The human leg has many more muscles, the scope of which goes beyond this
work. However, it should be noted that all of these play an important role
in gait, like providing energy and actuation for the walking motion, and their
functions need to be adequately replaced by a prosthesis.
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Figure 3.5: The muscles of the human leg that move the foot and toes. Copied
from [Big23] without adaptation which is published under the CC-BY-SA 4.0
license [CCBYSA]. Therefore this figure is exempt from the copyright covering
this thesis.

3.2 The human gait cycle

While walking is a familiar process, to analyse it, some form of definition is
necessary. In [Whi14], walking is defined as “a method of locomotion involving
the used of the two legs, alternately, to provide both support and propulsion
with at least one foot being in contact with the ground at all times”. Often,
gait and walking are not differentiated. However, walking is a specific form
of gait, which describes a pattern or manner of movement of the limbs while
moving. Thus, walking can be described by a gait cycle, introduced in the
following. For a more in depth introduction on gait analysis and the gait cycle
see [Whi14; Kir06].

The gait cycle describes the cyclic pattern of movement that occurs while
walking and is usually counted from one heel strike (when the heel first touches
the ground) to the next heel strike of the same leg [Whi14]. The gait cycle
can be broken down into two primary phases, the stance phase and the swing
phase which each consist of multiple sub-phase, as shown in Figure 3.7.

• Stance Phase – the period of the gait cycle when the foot is on the
ground and bearing body weight

– Heel strike (initial response, contact response, or weight accep-
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Figure 3.6: The muscles in the human foot. Copied from [Big23] without
adaptation which is published under the CC-BY-SA 4.0 license [CCBYSA].
Therefore this figure is exempt from the copyright covering this thesis.

tance) – the heel of the foot first touches the ground
– Foot flat – the entire foot is on the ground
– Midstance – the body weight is right above the foot
– Heel-off – the heel leaves the ground
– Toe-off – the toes leave the ground

• Swing phase – the period of gait from toe-off to heel strike
– Initial swing – just after toe-off
– Mid-swing – the swinging leg is directly underneath the body
– Terminal swing – just before heel strike

The initial contact of one foot occurs when the other is still on the ground,
resulting in a double support period, in which the weight is transferred from
one side to the other until the toe-off of the other foot occurs, resulting in a
single support, until the process repeats in a mirrored way. Usually, the stance
phase lasts 60% of the gait cycle and the swing phase lasts 40%, varying with
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Figure 3.7: The human gait cycle, copied from [Pir17], originally published
under CC BY 4.0 DEED [CCBY], thus it is exempt from the copyright of this
work.

the speed of movement. The double support period usually takes 10% of the
gait cycle. For a detailed analysis of gait cycle timing see [Whi14].

3.3 Replacing the human foot with a prosthesis

In developed countries, the main reason for amputations are circulatory dys-
functions, while in developing countries, most amputations are due to trauma
from conflict, or industrial or traffic accidents [Mar01a]. An amputation leads
to a permanent disfigurement and loss of function, and therefore drives the
need for prosthetic replacements. A foot prosthesis, as is examined in this
work, is an artificial device that replaces the function of a missing or ampu-
tated foot. The requirements of a foot prosthesis depend on the level and
type of amputation, the activity level and lifestyle of the user, and the biome-
chanical and psychological functions that the prosthesis has to replace [Ver09;
Ste18]. There are different types of prosthetic feet, see for instance [Haf05],
which provide different levels of functionality and are the result of ongoing
technological improvement.

This work examines the Össur Vari-Flex®, a so called energy storage and
return (ESAR) prosthesis [VARI]. Such ESAR prostheses are said to improve
gait in patients [Haf02] when compared to other passive prostheses. Passive
prosthetic feet have no motors or actuators which can provide energy and
control to the gait motion, making them cheaper and more independent than
active prosthetic feet. While active prosthetic feet can provide energy for the
gait cycle of the patient and thereby improve the mobility, they require a
power supply, usually a battery, which adds weight and requires control elec-
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tronics, increasing the cost of the prosthesis. A foot prosthesis has to replace
the functionality of the ankle-foot complex [Ver09]. Some of these are shock
absorption, compliance to uneven terrain and push-off [Haf05]. These func-
tions help improve the stability and balance, reduce the energy expenditure
and prevent abnormal compensations in the residual limb and other joints. As
[Des02] notes, the technical aspect and progress of prosthetics is only one part
in fully rehabilitating a patient, since physical rehabilitation may be affected
with psychological aspects of amputation. Psychological functions of a foot
prosthesis include restoring the appearance and self-image of the user as well
as the social perception of an amputation [Des02]. A prosthesis can enhance
the confidence of a patient and can for instance facilitate the social partic-
ipation. These functions help to improve the quality of life, mental health
and well-being of the patient [Des02]. Therefore, a foot prosthesis should be
designed to meet both the biomechanical and psychological needs of the user,
as well as being lightweight, durable, low-maintenance and affordable. Due
to the variability of humans and the resulting requirements for a prosthe-
sis, simulations are an important part in the development and uncertainty is
present from many sources and should be considered when designing future
prosthetics.

3.4 Consequences for the model

The leg in this work is modelled with a thigh, shank and prosthetic foot,
described in Section 4.2. The thigh and shank are considered rigid bodies, with
their anthropomorphic measures and inertia parameters based on [Cha75].
(These parameters are required for the biomechanical model to be able to
perform forward dynamics simulations.) As mentioned, a biomechanical model
has to find a balance between accuracy and complexity. The hip joint is
modelled as a spherical joint between the reference frame and the thigh and
the knee joint is modelled as a revolute joint, a common model simplification
[San11]. A foot prosthesis is typically connected to the shank via a socket
and pylon. The pylon acts as a support structure [Viv21] and is secured
within a socket that cradles the residual limb for a snug fit. The socket
is custom-fitted to the individual for optimal comfort and function, while the
pylon provides the necessary rigidity and alignment. An osseointegrated socket
embeds attachment points in the residual bone through a surgical procedure
[Viv21]. Thus, since most foot prostheses are rigidly connected to the shank
and the pylon aims to compensate for missing limb length and mass, the
prosthesis in the model is rigidly fixed to the end of the shank. Muscles
are currently not considered in the model, apart from their contribution to
the mass of the leg. This work examines the two distinct phases of the gait
cycle separately, see Section 4.2. This has the main advantage of further
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reducing the model complexity, by eliminating the need for phase transitions
and associated changes in contact and therefore constraints within the model.
Without these changes, both phases can be simulated with forward dynamics,
reducing the computational effort. The swing phase is examined by modelling
the human leg and letting it swing freely under gravity, similarly to a double
pendulum. The stance phase is examined by considering the leg in a squatting
position and increasing the weight of the shank. This leads to a load on the
prosthesis, similarly to the stance phase in gait.

3.5 Human gait analysis with optical motion capture
(MoCap)

In order to simulate the human leg with a prosthetic foot, information and data
are required about the gait cycle. For a detailed historical development of gait
analyses see [Sut01; Sut02; Sut05; Col18]. In general, these consist of athro-
pomorphic measures (leg length or mass) and data regarding the movement,
such as limb positions, kinematics and joint angles. In the following sections,
motion capture is introduced and some details on optical motion capture, as is
used in this work, are described. Motion capture (MoCap) is a technique that
records the movement of people, animals or objects and transfers the data to
a computer program to enable photorealism in a virtual environment [Kad89]
or further examination for research purposes [Whi14; Col18]. There are dif-
ferent types of MoCap, such as optical passive, optical active, markerless and
inertial MoCap [Col18]. Optical passive MoCap is a commonly used method,
which uses infrared cameras to track retroreflective passive markers attached
to the subject [Gho19b]. Optical active MoCap uses LED markers that emit
light instead of reflecting it. The main drawback of marker based MoCap is
the requirement and dependancy on accurately placed markers. Markerless
MoCap relies on software to detect the motion of the subject without markers,
avoiding that downside at the cost of accuracy and precision in the measure-
ment and is therefore rarely used in clinical applications or scientific analyses
that require highly accurate position data of the motion. Of course, all video
based MoCap is subject to common errors afflicting measurements relying on a
camera, such as lighting and measurement noise. Inertial MoCap uses inertial
measurement units (IMUs) worn by the subject that transmit data wirelessly
to a computer or smart device. While requiring less accuracy during the
IMU placement (being significantly cheaper and more robust than markers
and avoiding camera based issues) IMUs are not as accurate as marker based
methods and require a kinematic model and inverse kinematics to reconstruct
the motion which introduces its own challenges. While markerless and IMU
MoCap require less precision and effort in setup, the lack of accuracy and pre-
cision in the data lead to passive marker based optical motion capture being
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Figure 3.8: “The marker model used for gait analysis in this work, based on the
CGM 2.4 marker model [Leb24] and used in [Sch24b]. (ASI – anterior pelvis;
PSI – posterior pelvis; THAP – anterior proximal thigh; THAD – anterior
distal thigh; THI – lateral thigh; KNE – lateral knee; KNM – medial knee;
TIAP – anterior proximal shank; TIAD – anterior distal shank; TIB – lateral
shank; ANK – lateral ankle; MED– medial ankle; HEE – heel; TOE – second
toe; FMH – first toe; SMH – second toe; VMH – fifth toe). The red markers
are only used for the static trial and are removed during gait measurements.”
Figure and caption quoted from [Sch24b].

the gold standard for MoCap [Cha21]. This technique involves placing reflec-
tive markers on specific anatomical landmarks or joints of the subject, such as
the head, shoulders, elbows, wrists, hips, knees and ankles. The markers are
then illuminated by infrared light sources and tracked by multiple cameras
from different angles. The cameras capture the 2D coordinates of the mark-
ers in each frame and use triangulation to calculate their 3D positions. The
resulting 3D data can then be used to reconstruct the motion of the subject
and map it to a 3D model or character.

Marker based optical motion capture has several advantages over other Mo-
Cap techniques, such as high accuracy, resolution and reliability. It can also
capture complex motions and subtle details that are difficult to achieve with
other methods. However, it also has some disadvantages, such as occlusion,
which occurs when a marker is hidden from one or more cameras, marker
swapping, i. e., when two markers are confused by the software, marker drift,
i. e., a marker moves from its original position on the subject, and noise, i. e.,

53



Chapter 3 Human gait

unwanted signals interfere with the data [Gho19b]. These issues can affect the
quality of the motion capture data and require post-processing and editing to
reduce them.

In addition to entertainment and gaming applications, marker based op-
tical motion capture is also used for clinical purposes, such as diagnosing
injuries, monitoring rehabilitation, assessing movement disorders, validating
other measurement methods and evaluating treatment outcomes [Sco22; Gio22;
Lam23]. For example, marker based optical motion capture can be used to
detect and identify movement limitations or specific movement patterns of pa-
tients with certain diseases, such as Parkinson’s disease, stroke, cerebral palsy
and osteoarthritis. Marker based optical motion capture can also provide ac-
curate and objective measurements of joint angles, velocities, accelerations and
forces that can be used to evaluate muscle and joint loading and other biome-
chanical parameters. Furthermore, marker based optical motion capture can
be integrated with other technologies, such as electromyography (EMG), force
plates, pressure sensors and virtual reality (VR), to enhance the analysis and
feedback of human motion in clinical settings. The main method underlying
MoCap is photogrammetry, i. e., the process of obtaining geometric informa-
tion from images. In marker based optical MoCap, photogrammetry is used
to track the motion of reflective or light-emitting markers attached to specific
locations on the body of a human or an animal. Multiple cameras capture
the images of the markers from different viewpoints, and then triangulation is
used to compute the 3D coordinates of the markers. The resulting 3D trajec-
tories are then labelled and mapped to a skeleton model to obtain the 3D pose
and motion of the subject [Cha21; Gho19c; OPT; Ces14]. The CGM marker
model [Leb24] is a widely used method for estimating lower limb joint kinemat-
ics from motion capture data, see [Bak17], and is used for this work’s marker
model, shown in Figure 3.8. It is validated against a radiographic method
and showed good agreement for most joints, except for the ankle, which was
affected by soft tissue artefact (STA) in [Dav91]. The clinical utility of the
model was demonstrated by applying it to various populations, such as normal
adults, children, cerebral palsy patients, and amputees. The model consists
of rigid segments connected by functional or anatomical joint axes, and uses
a set of markers attached to the segments to define the segment coordinate
systems and joint angles. It defines segment axes and joint angles based on
[Gro83]. The model has been updated and modified over the years to improve
its accuracy and applicability. The CGM marker model was widely adopted
by the biomechanics community and became a standard method for report-
ing lower limb joint kinematics in gait analysis. The International Society
of Biomechanics (ISB) recommended the use of the CGM marker model as a
common framework for comparing and validating results across different stud-
ies and laboratories [Wu02] and the model is also incorporated into various
commercial software packages, such as VICON Plug-in Gait. For the cur-
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rent marker model and a palpation guide, see [Leb24], since the CGM model
is continuously developed, for instance in [PBM19; Leb19]. However, while
being a commonly used marker model, CGM is still subject to the same prob-
lems as other marker models and marker based measurement procedures, such
as marker occlusion or measurement noise [Cha21; Gho19c; Gho19b; Lee19;
Yam21]. Several methods have been proposed to address these issues, such
as data-driven approaches, using additional markers, functional calibration
methods, inverse kinematics or statistical models [Cha21; Gho19c; Gho19b;
Yam21]. However, these issues remain a challenge. This highlights the im-
portance of considering uncertainty in the process of subsequent calculations
based on marker data.

3.6 Joint angle calculation based on optical marker data

A common application for MoCap is the subsequent calculation and evaluation
of joint angles based on the marker position data. The joint angle calculations,
as used in [Sch24b] as well as for the results shown later on in this thesis, are
briefly summarised here.
The marker position data from the MoCap is preprocessed by checking for
large gaps in the data and interpolating them via splines, if necessary. High
frequency noise is filtered out via a lowpass Butterworth filter with a cut-
off frequency of 6 Hz and order four, as suggested in [Ric08]. From this
preprocessed marker position data, the joint angles are calculated directly
in Matlab 2023b. In this work, the Grood & Suntay convention [Gro83] is
used due to is common use, see [Dre22; Mas22; Wu02]. It assigns a local
segment coordinate systems (SCS), consisting of the origin and orthonormal
axes, to every body part. The axes are defined from anatomical landmarks
and distal and proximal joint centres [Wu02; Bak17]. Based on two SCSs
that are adjacent to the joint, the joint angles are calculated for each joint
and can be interpreted as flexion, abduction and rotation angles. For the
detailed procedure used in this thesis see [Sch24b], which is based on [Gro83].
To summarise, the marker positions as reported form the MoCap are used to
calculate antropomorphic measures and the SCSs, from which the joint angles
are calculated. It should be noted, that in this work, the anthropomorphic
measures are not considered for the uncertainty calculations [Sch24b].

3.7 Epistemic uncertainty in marker positions during optical
MoCap

Since optical marker based motion capture is commonly used as the gold stan-
dard to evaluate other measurement methods [Cha21], it is important to con-
sider possible errors in the measurement. An idea was contributed to this, by
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introducing an error model for marker position errors using epistemic uncer-
tainty, which is then propagated through subsequent joint angle calculations
with the Graph Follower algorithm. This resulted in the journal publication
[Sch24b]. The proposed error model and method for its consideration allow for
an efficient worst-case analysis while simultaneously providing a bidirectional
correlation of marker error magnitude and the resulting joint angle calcula-
tions. Before detailing the error model, the error sources that are considered
and used for the uncertainty quantification are introduced.

3.7.1 Sources of uncertainty in motion capture

The following is quoted from my previous work [Sch24b] Section 1.2. Variable
names in the text and figures have been changed to better fit this thesis.
Figures and tables have been modified to suit the format of this thesis.
“
Knowledge about the source and magnitude of the errors is required to model
the uncertainty appropriately. According to [Lea05; Cap05; Chi05; Del05],
the main error sources occuring during marker based optical motion capture
are general measurement system uncertainty, placement errors of markers and
soft tissue artefacts.

General measurement uncertainty The measurement system introduces a
deviation between the physical location of the marker and the reported po-
sition by the measurement system. This depends on the system used, the
diligence during the calibration, camera’s positions, marker diameter and mea-
surement volume and is independent of the marker’s purpose.

Errors introduced by marker occlusion and other system-based errors [Top20;
Van18; Con21], are not within the scope of this work. As with all modelling
approaches, a reduction of complexity is necessary, while accepting the intro-
duction of more uncertainty [Kiu09].

Placement error Incorrect placement of markers by the examiner occurs es-
pecially when easy-to-identify anatomical landmarks are not available. In this
work, inter-examiner placement errors are used as a reference for the errors
introduced by the manual placement of markers. Table 3.1 shows the litera-
ture values found in the summary series of [Lea05; Cap05; Chi05; Del05] for
inter-examiner accuracy for the various lower body segments along with the
assumed errors that are used in the calculations later on.

Soft tissue artefacts Soft tissue artefacts refer to the relative movement be-
tween surface markers on the soft tissue (e. g. muscle and skin) and the un-
derlying bone and are the main known source of uncertainty in marker based

56



3.7 Epistemic uncertainty in marker positions during optical MoCap

Table 3.1: Summary of the error sources affecting the markers, alongside the
literature averages (lit. avg., summarised from [Lea05; Cap05; Del05; Chi05])
and assumed errors that are used for the simulation in this work with the
maximum modelled deviation

∑
. The detailed location of the markers can

be seen in Figure 3.8. All values are in mm.

markers segment measurement placement error
soft-tissue

artefact error
∑

system
error lit. avg. used lit. avg. used

ASI,PSI pelvis 2 14.4 15 13.5 15 32
THAP,
THAD,

THI,KNE thigh 2 10.3 10 13.5 20 32
TAIP,
TIAD,
TIB shank 2 7.2 8 16.3 20 30
ANK ankle 2 n.a. 8 n.a. 10 20
HEE,
TOE,
VMH foot 2 8.5 5 n.a. 0 7

motion capture. These artefacts vary between study participants, the recorded
movements, marker location and marker type. Table 3.1 shows values of soft
tissue artefacts occurring during normal human gait for different anatomical
landmarks based on [Lea05; Cap05; Chi05; Del05].
”

3.7.2 Modelling marker position uncertainty
The following is quoted from my previous work [Sch24b] Chapter 2.5 to 2.6.
Variable names in the text and figures have been changed to better fit this
thesis. Figures and tables have been modified to suit the format of this thesis.
“
The epistemic uncertainty has to be quantified, based on the data shown in
Table 3.1, before it can be propagated from the marker positions to the joint
angles. The values in Table 3.1 are based on [Lea05; Cap05; Del05; Chi05].
To account for marker occlusion and other system based errors, a slightly
larger measurement system error is assumed. Furthermore, we assume the
placement errors to be different for different body segments and markers. We
also assume that markers placed on joints have the same error values as the
joint’s proximal limb. Furthermore, a model needs to be developed that can
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apply the now quantified uncertainty to the data used for calculating joint
angles.

Specifically, the possible deviation of the actual marker position from the
measured position is modelled as a triangular fuzzy number (Figure 3.9(a)).

[...]

Here, the fuzzy number quantifies the possible deviation of the marker’s
measured position from the it’s real position. The size of this deviation is
quantified based on literature values [Lea05; Cap05; Del05; Chi05] and sum-
marised in Table 3.1. This assumed deviation limits pmin, pmax, the smallest
and largest values of the fuzzy number, respectively.

To incorporate uncertainty in the marker’s position, we assume that the
marker position is located within a sphere around the measured position. The
sphere’s radius equals the cumulative error

∑
from Table 3.1 for the respective

marker position on the segment. To model the sphere around the measured
position ri of the marker i, a deviation p̃i is added to its measured position
(Figure 3.9(c)). To allow the marker to be anywhere inside the sphere, the
norm of the total deviation ||p̃i|| is smaller or equal to a maximum allowed
deviation such that ||p̃i|| ≤

∑
i

(from Table 3.1). Note that the possible
deviation interval is symmetric pi,max =

∑
i

and pi,min = −
∑

i
and

r̃i = ri + p̃i

with ||p̃i|| ≤ pmax

(3.1)

To model the displacement of a marker i in 3D space, its displacement
p̃i = [px,i, py,i, pz,i]T consists of three different variables for the optimisation
in the Graph Follower algorithm and is subject to the constraint ||p̃i|| ≤

∑
i
.

However, this constraint induces a dependency between the three spatial di-
rections of p̃i. In general, the α-level optimisation requires the optimisation
variables to be independent of each other [Möl00], since additional uncertainty
can be introduced by constraints. To investigate, whether additional uncer-
tainty is introduced by the constraints, the deviation is implemented with
Cartesian coordinates and spherical coordinates. Both methods yielded the
same results for the joint angle envelopes, suggesting that no additional un-
certainty is introduced here by the constraint. Based on this, the Cartesian
coordinate formulation is used for all calculations in this work.

3.7.3 Fuzzy joint angle calculation

After modelling the error in the markers’ positions with epistemic uncertainty,
this uncertainty is propagated through the joint angle calculations with the
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Graph Follower algorithm [Eis19b]. The uncertain deviation of all nM markers
p̃ = [p̃1, p̃2, . . . , p̃nM

] is called the input parameter. The goal of propagating
input parameters affected with epistemic uncertainty is to calculate the fuzzy
target quantity f̃(p̃, t), in our case, the joint angle for all timeframes. To do
this, the output interval of the target quantity f(p, t), along with its member-
ship function µf̃ (p̃) is calculated via α-level optimisation. These two values
together approximate the fuzzy target quantity f̃(p̃, t).

Figure 3.9 shows two steps in this process. The triangular fuzzy number
for the input parameters (Figure 3.9(a)) is discretised with α-level cuts. The
k-th α-level αk ∈ [0, 1] defines a subinterval [pmin,αk , pmax,αk ] of the input
parameter uncertainty interval [pmin, pmax] so that

µp̃(p̃αk
) ≥ αk ∀ p̃αk

∈ [pmin,αk , pmax,αk ] (3.2)

and µp̃(pmin,αk ) = µp̃(pmax,αk ) = αk. Due to the convexity of the triangular
input fuzzy number, the membership function value αk for the target output
µf̃ (f̃αk ) is inherited from the input α-level, [Ngu78], in the α-level optimisa-
tion. This means the target output membership function value for the current
α-level is known

µf̃ (f̃αk ) ≥ αk ∀ f̃αk ∈ [fmin,αk , fmax,αk ] (3.3)

and µf̃ (fmin,αk ) = µf̃ (fmax,αk ) = αk. The time interval t ∈ [0, T ] is dis-
cretised with time frames tj . Then the α-level optimisation calculates the
largest (fmax,αk ) and smallest (fmin,αk ) values of the target output f(p̃, tj)αk

(Figure 3.9(b)) at the timeframe tj , for the α-level αk. Thus, the fuzzy tar-
get output f̃(p̃, t) is approximated by calculating the target output interval
[fmin,αk , fmax,αk ] via optimisation individually for multiple α-levels for all
timeframes. Of course, the approximation accuracy increases with the num-
ber of examined α-levels. To get the entire joint angle evolution over time,
this optimisation is performed at every timeframe of the measurement and for
every considered α-level.

In this work, the Graph Follower algorithm [Eis19b] performs the above-
mentioned steps for α-level optimisation. Specifically, the OP-II version of
the Graph Follower algorithm is used, which does not linearise the target
function for the optimisation. This is possible due to the low computational
cost of calculating the joint angles and leads to more accurate envelopes than
using a linearised target function for the optimisation (OP-III in [Eis19b]).
The Graph Follower algorithm uses additional postprocessing steps to further
enhance the target output envelopes. The individual trajectories of the target
output calculated during one α-level are stored in a library and a postprocess-
ing step ensures that the maximum or minimum of all calculated trajectories
is used in the final envelopes for every α-level.
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Chapter 3 Human gait

Implementation of the Graph Follower algorithm The Graph Follower algo-
rithm is implemented in Matlab 2021a. The optimisation is performed by
the provided fmincon function, using MultiStart with 15 points. The algo-
rithm ‘interior-point’ is used for the optimisation and the tolerance settings
for fmincon are set as ‘OptimalityTolerance’ = 1e − 12 and ‘StepTolerance’ =
1e−12. For more details on the Graph Follower algorithm and its performance
see [Eis19a; Eis19b].
”
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3.7 Epistemic uncertainty in marker positions during optical MoCap
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Figure 3.9: “(a) shows a convex fuzzy number and its approximation by a tri-
angular fuzzy number as required for the Graph Follower algorithm, alongside
an exemplary α-level discretisation. (b) shows the resulting envelopes when
the fuzzy parameter p is propagated to the target output with the Graph Fol-
lower algorithm. (c) shows how the measured marker position ri of marker i
is affected with an uncertain deviation p̃i allowing the marker position to be
anywhere in a sphere around the measured position r̃i, which has the radius of
the maximum allowed deviation.” Figure and caption quoted from [Sch24b].
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Chapter 4

The biomechanical model

Simulating the human leg with a prosthetic foot in the presence of uncer-
tainty requires a biomechanical model of the human leg and the prosthesis. A
biomechanical model is a mathematical representation of the mechanics in a
biological system, in this case the human leg with a carbon spring prosthesis.
As with other simulations, the main advantage of such a model is, that it can
simulate different situations or configurations, for instance prosthesis designs,
without requiring cost-intensive real measurements and manufacturing. Es-
pecially for biological systems, it has the further advantage that it can enable
the observation of quantities that can not be easily measured in vivo. For the
prosthesis, one such quantity is the stored energy during the gait cycle. One
critical aspect when designing a prosthesis is the prosthesis’ energy storage
and return behaviour, since it is related to the walking comfort of the patient.
However, to be useful, the model has to be as accurate and as detailed as
possible, while still being feasible to simulate on current hardware. The con-
sideration of computational effort required to simulate the model is even more
important with the many evaluations required for uncertainty simulations.
This results in a trade off of model complexity and accuracy with computa-
tional cost. In the following sections, the model developed and used in this
work is described. The modelling process of the prosthesis with geometrically
exact beam theory and the expansion to include a leg model are described,
starting with a brief summary of rigid multibody dynamics. Then constrained
Lagrangian mechanics is briefly recapped before summarising the derivation
of the variational integrator used for the forward dynamics simulation. With
the theory recapped, the leg model is described and the prosthesis is mod-
elled with geometrically exact beam theory. Once the model is available, two
simulation scenarios are described, based on the human gait cycle followed by
including homogenisation of the prosthesis’ layers in the model.

Previous works This chapter is based on, and uses parts, of chapters in the
following publications. The model is based on the two proceedings [Sch21a;
Sch21b], the journal papers [Sch22b; Sch24b] and the book chapter [Sch24a]
and on the student thesis [Blo23; Sch19].



Chapter 4 The biomechanical model

4.1 Biomechanical modelling

Creating a biomechanical model involves several steps that, depending on the
type of biomechanical model, require expertise in biology, physics, mathemat-
ics, and computer science. When creating a model of a given biological system,
the goal is to create an as accurate as possible mathematical representation of
the system, in this case, the human leg with a prosthetic foot during gait. As
with any model, some reduction in complexity is necessary while introducing
more uncertainty [Kiu09]. An accurate representation of the leg’s dynamics
requires parameters such as mass and inertia and anthropomorphic measures
such as length and joint positions are necessary. Furthermore, a method of
mathematically describing the movement is required. As for the prosthesis, an
accurate representation of its elastodynamic behaviour is desired, while at the
same time not being computationally expensive. Before detailing the model,
the required theories are briefly summarised.

4.1.1 Rigid multibody dynamics

The leg model can be formulated as an open multibody chain with the theory
from [Woe11; Lan11; Ley08a; Bet06]. For this, the k-th body is described by
its configuration vector 𝕢k, which consists of the position of its center of mass
φk and an orthonormal director triad dk

i with i = 1, 2, 3 relative to the frame
of reference such that𝕢k =

[
φk, dk

1 , dk
2 , dk

3
]T ∈ ℝ12. (4.1)

The configuration 𝕢k ∈ ℝ12 has twelve degrees of freedom, so for one body
ndof = 12. For a multibody system with nb individual rigid body ndof = 12nb.
However, a single rigid body only has six degrees of freedom, three rotational
ones, three translational ones. To correctly model the rigid body’s behaviour,
six so called internal constraints gint(𝕢k) are used, which reduce the degrees
of freedom to six,

gint(𝕢k) =




1
2 [(dk

1)T · dk
1 − 1]

1
2 [(dk

2)T · dk
2 − 1]

1
2 [(dk

3)T · dk
3 − 1]

(dk
1)T · dk

2
(dk

3)T · dk
1

(dk
2)T · dk

3




= 0 ∈ ℝ6. (4.2)

The first three constraints in gint(𝕢k) ensure that the unit vectors remain at
unit length while the last three ensure their orthogonality to each other. For
a multibody system, the configuration of the nb bodies can be grouped into
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4.1 Biomechanical modelling

𝕢 ∈ ℝ12nb as𝕢 =
[𝕢1,𝕢2, . . . ,𝕢k, . . . ,𝕢nb

]T ∈ ℝ12nb . (4.3)

Here, the model consists of the thigh, shank and prosthesis, thus nb = 3
and k = 1, 2, 3. Similarly, the internal constraints can be grouped together,
ensuring the rigid body behaviour for all bodies in the model

gint(𝕢) =
[
gint(𝕢1), gint(𝕢2), . . . , gint(𝕢k), . . . , gint(𝕢nb )

]T ∈ ℝ6nb . (4.4)

With the velocities 𝕢̇ = d𝕢
dt

and the mass matrix M (which includes the
principal values of the Euler tensor with respect to the body’s centre of mass),
the kinetic energy 𝕋 can be defined, as seen for instance in [Woe11], as𝕋(𝕢̇) = 1

2 𝕢̇T M 𝕢̇. (4.5)

The potential energy 𝕍 consists of the external potential energy due to the
gravitational field described by the gravitation force vector 𝕘 and the internal
potential energy due to the deformation of the prosthesis 𝕍int𝕍 = (φ − φ0)T m𝕘 + 𝕍int, (4.6)

where φ0 is the initial position of the rigid body. The calculation of the
internal deformation energy of the prosthesis is described in more detail in
Section 4.2.1, see the stored energy function 𝕍int in Eq. (4.30).
To create the multibody model, it can be built as an open kinematic chain,
where the bodies are connected by joints. The human leg in this work is
modelled with three types of joints, a spherical joint for the hip, a revolute
joint in the knee and the ankle is fixed rigidly to the shank. These joints have
the following external constraints gext(𝕢), where the index i = 1, 2 in □i refers
to the respective rigid body of the joint, ϱ is the distance to the joint centre
and n is the revolute joint’s rotational axis, which is fixed to the first body of
the joint. The initial configuration of the the joint is defined by η.

Rigidly connecting two rigid bodies To rigidly connect two rigid bodies to
each other, as is used for the connection of the prosthesis to the leg’s shank
the following constraint can be used

gext(𝕢) =




(φ2 + ϱ2) − (φ1 + ϱ1)
(d1

1)T · d2
1 − η1

(d2
1)T · d2

2 − η2
(d3

1)T · d2
3 − η3


 = 0 ∈ ℝ6. (4.7)
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Chapter 4 The biomechanical model

Spherical joint For the spherical joint, used for the hip joint in the model,
only the centres of mass of the two bodies are constrained

gext(𝕢) =
[
(φ2 + ϱ2) − (φ1 + ϱ1)

]
= 0 ∈ ℝ3. (4.8)

Revolute joint For a revolute joint, rotation is only permitted around one
axis, leading to the constraints

gext(𝕢) =




(φ2 + ϱ2) − (φ1 + ϱ1)
(n)T · d2

1 − η1
(n)T · d2

2 − η2


 = 0 ∈ ℝ5. (4.9)

This is used to approximate the knee joint in the model.

Anchoring a rigid body To prevent one or more bodies of the multibody
system from moving from their initial configuration, constraints can enforce
the configuration of the body to stay constant in time,

gext(𝕢) = 𝕢k(t) − 𝕢k(t0) = 0 ∈ ℝ6. (4.10)

This is used for the fixation of two of the prosthesis’ nodes in the load scenario,
simulating permanent ground contact.

4.1.2 Lagrangian mechanics

This work uses a Variational Integrator (VI), developed in [Hai00; Hai06;
Moo03; Ley08b; Mar01b], for the forward dynamics simulation of the model,
due to its excellent long term energy behaviour [Moo03; Hai06]. They are de-
rived by applying a discrete version of the variational principle from [Mar01b]
to the discrete Lagrangian, resulting in a discrete time-stepping scheme, see
[Ley08b; Ley08a]. For constrained systems, the augmented Lagrangian is
used. For an excellent summary on mechanics including variational principles
see [Cli17].

Continuous constrained Lagrangian mechanics The Lagrange function L(𝕢, 𝕢̇)
is defined as the difference between the system’s kinetic energy 𝕋(𝕢̇) and its
potential energy 𝕍(𝕢)

L(𝕢, 𝕢̇) = 𝕋(𝕢̇) − 𝕍(𝕢) ∈ ℝ. (4.11)

In multibody systems and rigid bodies, as described in Section 4.1.1, the
number of configuration variables is larger than the degrees of freedom of the
system. To correctly represent the desired system, constraint equations must
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4.1 Biomechanical modelling

be satisfied. They are considered via the augmented Lagrangian L̄(𝕢, 𝕢̇, λ),
which is defined as

L̄(𝕢, 𝕢̇, λ) = L(𝕢, 𝕢̇) − gT (𝕢) · λ, (4.12)

with the system’s constraints g(𝕢) and the Lagrange multipliers λ. Based on
this, the system’s action is defined as

S =
∫ tNt

t0

L̄(𝕢, 𝕢̇, λ)dt. (4.13)

Here, t ∈ ℝ parametrises time in the interval [t0, tNt ]. The principle of sta-
tionary action or Hamilton’s principle states that a trajectory is a station-
ary point of the action for variations δ𝕢(t) that vanish at the end points
δ𝕢(t0) = δ𝕢(tNt ) = 0, i. e.,

δS = δ

∫ tNt

t0

L̄(𝕢, 𝕢̇, λ)dt = 0 ∀ δλ and ∀ δ𝕢 : δ𝕢(t0) = δ𝕢(tNt ) = 0

=
∫ tNt

t0

(
∂L(𝕢, 𝕢̇)

∂𝕢 δ𝕢 + ∂L(𝕢, 𝕢̇)
∂𝕢̇ δ𝕢̇ − (GT (𝕢)λ)T δ𝕢 − gT (𝕢)δλ

)
dt = 0

(4.14)

Applying integration by parts after varying L̄ and applying the fundamental
lemma of the calculus of variations leads to the well known, constrained second
order Euler-Lagrange equations [Mar01b],

∂L

∂𝕢 − d
dt

(
∂L

∂𝕢̇)
− GT (𝕢) · λ = 0 ∈ ℝndof

g(𝕢) = 0 ∈ ℝnc ,

(4.15)

where G(𝕢) = ∂
∂𝕢g(𝕢) is the constraint Jacobian and nc is the number of

constrained degrees of freedom. The constraint forces limiting the system’s
movement are represented by −GT (𝕢)·λ, whose direction and value is given by
the Lagrange multipliers λ ∈ ℝnc . This allows for the derivation of a system’s
equations of motion, which can then be solved via numerical integration from
the initial conditions 𝕢(0) = 𝕢0 and 𝕢̇(0) = 𝕢̇0. However, not all integrators
are suitable to preserve a system’s structure. Variational integrators, derived
from a discrete version of Lagrangian mechanics, preserve the system’s struc-
ture and have excellent energy behaviour, leading to their use for all forward
dynamics simulations in this work.
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Chapter 4 The biomechanical model

Discrete constrained Lagrangian mechanics The discrete augmented La-
grangian is defined similarly to its continuous counterpart, however, the pre-
viously continuous in time configuration 𝕢(t) is discretised on a time grid of
equidistant time nodes tj on the time interval from [t0, tNt ] with the timestep
h, such that tj = t0 + jh. Denoting the approximation 𝕢j ≈ 𝕢(tj) and ap-
proximating the action integral with midpoint quadrature and the velocity𝕢̇(t) with finite differences for the small time section [tj , tj+1], the discrete
Lagrangian is

Ld(𝕢j ,𝕢j+1) = hL

(𝕢j+1 + 𝕢j

2 ,
𝕢j+1 − 𝕢j

h

)
≈

∫ tj+1

tj

L(𝕢, 𝕢̇)dt. (4.16)

To ensure that the constraints g are fulfilled to numerical accuracy at the
discrete time nodes and not in between, a generalised trapezoidal rule is used

h

2 g(𝕢j) · λj + h

2 g(𝕢j+1) · λj+1 ≈
∫ tj+1

tj

gT (𝕢) · λdt, (4.17)

as seen in [Ley06; Ley10]. This results in the discrete augmented Lagrangian

L̄d(𝕢j , λj ,𝕢j+1, λj+1) = Ld(𝕢j ,𝕢j+1)− h

2
[
gT (𝕢j) · λj + gT (𝕢j+1) · λj+1

]
.

(4.18)

The discrete action Sd approximating the continuous action S in Eq. (4.13)
then reads

Sd =
Nt−1∑

j=0

L̄d(𝕢j , λj ,𝕢j+1, λj+1). (4.19)

Applying the discrete Hamilton principle leads to

δSd =
Nt−1∑

j=0

[
∂Ld(𝕢j ,𝕢j+1)

∂𝕢j
· δ𝕢j + ∂Ld(𝕢j ,𝕢j+1)

∂𝕢j+1
· δ𝕢j+1

h

2
∂g(𝕢j)T

∂𝕢j
· λj · δ𝕢j + h

2
∂g(𝕢j+1)T

∂𝕢j+1
· λj+1 · δ𝕢j+1

h

2 g(𝕢j)T · δλj + h

2 g(𝕢j+1)T · δλj+1

]
= 0

∀ δλj , δ𝕢j and δ𝕢0 = δ𝕢Nt = 0.

(4.20)
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Using a discrete version of the fundamental lemma of the calculus of variations
and shifting the sum indices to factor out δ𝕢j and eliminate δ𝕢j+1 leads to
the discrete constrained Euler-Lagrange equations

D1Ld(𝕢j ,𝕢j+1) + D2Ld(𝕢j−1,𝕢j) − GT
d (𝕢j) · λj = 0 ∈ ℝndof

g(𝕢j+1) = 0 ∈ ℝnc ,
(4.21)

where DiF (x1, . . . , xi, . . . , xn) = ∂F (x1,...,xi,...,xn)
∂xi

is the differentiation of F

with respect to its ith variable and the discrete Jacobian of the constraints
Gd(𝕢j) = h

∂g(𝕢j )
∂𝕢j

. Note that the constraint forces −GT
d (𝕢j) · λj ensure that

the constraints are fulfilled to numerical accuracy at the configuration 𝕢j+1.

Including external forces So far the introduced theory is only valid for con-
servative systems. However, the model in this thesis includes Kelvin-Voigt vis-
cous damping to improve the numerical stability, see Section 4.2.1 Eq. (4.33).
This can be considered by including the viscous damping forces fext = ∂𝕍visc

∂𝕢̇
via the Lagrange-d’Alembert principle, see [Wri08; Pen18; Hua22]. The same
principle can also be used to consider external forces from, e. g., actuators.
For the continuous case, the Lagrange-d’Alembert principle reads

δ

∫ tNt

t0

L̄(𝕢, 𝕢̇, λ)dt +
∫ tNt

t0

fext(𝕢, 𝕢̇) · δ𝕢dt = 0

∀ δλ and ∀ δ𝕢 : δ𝕢(t0) = δ𝕢(tNt ) = 0.

(4.22)

From the variational principle, the constrained forced Euler-Lagrange equa-
tions follow

∂L

∂𝕢 − d
dt

(
∂L

∂𝕢̇)
− GT (𝕢) · λ + fext(𝕢, 𝕢̇) = 0 ∈ ℝndof

g(𝕢) = 0 ∈ ℝnc .

(4.23)

The inclusion of dissipative forces does not impede the good energy behaviour
of variational integrators. The energy change in the system is physically mo-
tivated instead of being caused by numerical inaccuracies.
For the discrete setting, the influence of the external forces f+

ext,j and f−
ext,j

at the time node tj , in the time intervals [tj−1, tj ] and [tj , tj+1], respectively,
have to be taken into account. The virtual work is approximated with

f−
ext,j · δ𝕢j + f+

ext,j · δ𝕢j+1 ≈
∫ tj+1

tj

fext(𝕢, 𝕢̇) · δ𝕢dt. (4.24)

69



Chapter 4 The biomechanical model

The position and velocities are approximated via the midpoint rule and finite
differences, respectively

f−
ext,j = ∆t

2 fext

(𝕢j + 𝕢j+1

2 ,
𝕢j+1 − 𝕢j

∆t

)

f+
ext,j = ∆t

2 fext

(𝕢j−1 + 𝕢j

2 ,
𝕢j − 𝕢j−1

∆t

)
.

(4.25)

With this, the constrained forced Euler-Lagrange equations read

D1Ld(𝕢j ,𝕢j+1) + D2Ld(𝕢j−1,𝕢j) − GT
d (𝕢j) · λj + f+

ext,j + f−
ext,j = 0

g(𝕢j+1) = 0.
(4.26)

These non-linear equations can then be solved iteratively with a Newton-
Raphson scheme for the unknowns (𝕢j+1, λj), if (𝕢j−1,𝕢j) are known.
To initialise the time-stepping scheme, the configurations (𝕢0,𝕢1) are required.
However, (𝕢0,𝕢1) implicitly define the initial kinetic energy of the system, in
dependency of the timestep. To explicitly define the initial velocities and
ensure consistent initial conditions, the Legendre transformation can be used
to define the conjugate momenta and calculate 𝕢1.

Legendre transformation Defining the conjugate momenta with the discrete
Legendre transformation𝕡−

j = −D1Ld(𝕢j ,𝕢j+1) + 1
2GT

d (𝕢j) · λj − f−
ext,j (4.27a)𝕡+

j = D2Ld(𝕢j−1,𝕢j) − 1
2GT

d (𝕢j) · λj + f+
ext,j , (4.27b)

allows for the constrained forced discrete Euler-Lagrange equations (4.26) to
be rewritten as

−𝕡−
j + 𝕡+

j = 0 ∈ ℝndof

g(𝕢j+1) = 0 ∈ ℝnc .
(4.28)

Then the equations can be reinterpreted as an enforcement of the equality
between the left-sided momentum 𝕡−

j and right-sided momentum 𝕡+
j at each

time node tj see [Mar01b].
The value of 𝕡−

0 is defined by the system’s initial momentum 𝕡0 with𝕡0 − 𝕡−
0 (𝕢0,𝕢1) = 0 and g(𝕢1) = 0. (4.29)

From this 𝕢1 and λ0 can be calculated. Then the pair (𝕢0,𝕢1) is known
and 𝕢2 and λ1 and subsequent configurations and Lagrange multipliers can
be calculated from Eq. (4.15). Using this, consistent initial conditions are

70



4.2 Modelling the human leg with a prosthetic foot

ensured in the simulation.

4.2 Modelling the human leg with a prosthetic foot

The leg is modelled using constrained rigid body dynamics [Bet05; Bet06;
Ley08a], while the prosthesis is modelled with predeformed7 geometrically
exact beam theory [Ant95]. The equations of motion are derived via La-
grangian formalism and then solved via a variational integrator [Mar01b]. In
general, dynamical systems can not be solved exactly and numerical methods
are needed to approximate their solutions. However, not all numerical meth-
ods are equally accurate or reliable, and some may introduce errors or artefacts
that distort the physical behaviour of the system. The main advantage of VIs
is their excellent energy behaviour, due to their structure preserving proper-
ties. They approximate the solution of the Euler-Lagrange equations and a
discrete version of Noether’s theorem can be applied and holds true [Mar01b].
As mentioned in Section 3.3, a prosthesis that stores and releases energy more
efficiently during the gait cycle is associated with improved gait in a patient.
It is also difficult to measure in vivo, making it a perfect quantity to be ex-
amined in simulations. Thus, using an integrator in the simulation that has
good energy behaviour is beneficial.

The following is quoted from my previous work [Sch22b] Section 2. Vari-
able names in the text and figures have been changed to better fit this thesis.
Figures and tables have been modified to suit the format of this thesis.
“
In this work, parameters based on [Cha75] are used for mass, inertia and size
of the thigh and shank and are summarised in Table 4.1. The prosthetic foot
is modelled after the Össur Vari-Flex®carbon spring prosthesis [VARI]. The
prosthetic foot is rigidly attached to the shank, mimicking a passive prosthetic
foot. This means that there is no actuator inputting energy into the prosthetic
foot during gait, opposed to for instance the “Empower Prothesenfuss” from
[EMPO], which actively controls the prosthesis during gait and can reduce
metabolic cost for the wearer [Asi21; Her12]. However, such an active pros-
thesis requires external energy. Here, a passive prosthetic foot is examined,
which only stores and releases energy provided by the patient.

4.2.1 The carbon spring prosthesis model
In this work, the passive prosthetic foot Össur Vari-Flex® from [VARI], shown
in the top of Figure 4.1, is modelled in [Sch19; Soe19] with geometrically exact
beam theory from [Ant95; Cri99].

7Sometimes also termed precurved geometrically exact beam theory in literature.
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Chapter 4 The biomechanical model

Table 4.1: Parameters for the thigh and shank used in this works simulations,
from [Cha75].

thigh shank unit
length 0.4582 0.3753 [m]
mass 6.5233 2.6857 [kg]

inertia J1 0.1137 0.0391 [kg/m2]
inertia J2 0.1158 0.0393 [kg/m2]
inertia J3 0.0225 0.0029 [kg/m2]

centre of mass distance
to proximal centroid 0.1779 0.1943 [m]
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L
s

d1(s, 0)

d3(s, 0)d2(s, 0)

deformed configuration

d1(s, t)
d3(s, t)

d2(s, t)
e3

e2
e1

ϕ(s, 0)

ϕ(s, t)

−0.2
−0.1

00

0

0.1

x in[m]y in [m]

z
in

[m
]

Figure 4.1: “The Össur Vari-Flex® (top) which is modelled with the geometri-
cally exact beam theory (middle, based on [Cri99]) resulting in the high fidelity
predeformed prosthesis model in Matlab (bottom) in the reference configura-
tion (transparent) and in a deformed configuration (coloured by stress resul-
tants). The image of the prosthesis is excluded from the copyright covering
this work.” Figure and caption quoted from [Sch22b].

73



Chapter 4 The biomechanical model

This formulation allows for accurate representation of complex strain states
in the prosthesis while still keeping the computational demand relatively low
compared to full 3D finite element models.

[...]

The location of the centerline of the beam is denoted by φ(s, t) ∈ ℝ3,
where s runs along the beam’s length and t denotes time. The orienta-
tion of a given cross-section is represented by an orthonormal director triad
d1(s, t), d2(s, t), d3(s, t) ∈ ℝ3. Due to the orthonormality, the cross-sections
of the beam are modelled as rigid sections, omitting warping and distortion
effects in the model. The prosthesis’ deformation energy is modelled with a
St. Venant-Kirchhoff-type stored energy function [Lan11; Lan13] which de-
scribes an ideally elastic material behaviour.

𝕍int(Γ, K) = 1
2

∫ L

0

(
ΓT · DΓ · Γ + KT · DK · K

)
(4.30)

The material parameters and geometry of the beam are included in the two
matrices DΓ = diag(GA, GA, EA) and DK = diag(EI1, EI2, GJ) consist-
ing of the Young’s modulus E, the shear modulus G and geometry specific
parameters e. g. the cross-section area A, the area moments of inertia I1, I2
and the polar moment of inertia J . The values derived via reverse engineering
in [Soe19] are summarised in Table 4.2.

Table 4.2: Isotropic material parameters for the prosthesis derived in part
with reverse engineering in [Soe19] along with the assumed viscous damping
parameter.

Young’s modulus E 59958e6 [N/m2]
Poisson’s ration ν 0.265
shear modulus G E

2(1+ν) = 23.693e6 [N/m2]
density ρ 1.71e3 [kg/m3]

viscous damping η 1.0

The strain measures Γ(q) and K(q) quantify shear, elongation, flexion and
torsion with

Γi = dT
i · d

ds
φ − [dT

i · d
ds

φ]
∣∣∣∣
t0

(4.31)

Ki = 1
2 ϵijk

[
dT

k · d
ds

dj − [dT
k · d

ds
dj ]

∣∣∣∣
t0

]
, (4.32)
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4.2 Modelling the human leg with a prosthetic foot

where i, j, k = 1, 2, 3. Figure 4.1 shows the prosthesis in the top, a geomet-
rically exact beam with the centerline and directors in the middle, while the
resulting model of the prosthesis from [Sch19; Soe19] in an undeformed8 and a
deformed state, using the predeformed geometrically exact beam formulation
for the prosthesis geometry, is shown in the bottom.

To complete the model, viscous damping is included in the beam model.
Following [Lan11; Lan13; Sch16], the effective material constitutive equations
are extended by a viscous term, proportional to the material strain rates
Γ̇i, K̇i, with viscosity parameters for extension ηE and shear ηG. Similar to
the energy function above, the Kelvin-Voigt viscous dissipative potential 𝕍visc
is defined as

𝕍visc = 1
2

∫ L

0

(
Γ̇T Dη1 Γ̇ + K̇T Dη2 K̇

)
(4.33)

where Dη1 = diag(ηGA1, ηGA2, ηEA) and Dη2 = diag(ηEI1, ηEI2, ηGJ)
combine material and geometric parameters, as for instance in [Lan13]. Since
no information on the viscous damping parameters ηE , and ηG for the pros-
thesis are currently available, this work uses ηE = ηG = 1.0, to counteract
high frequency vibrations inside the beam. This continuous formulation of
the beam can be discretised using one-dimensional finite elements, see for in-
stance [Zie06; Fis07], and solved numerically. In this work, the prosthesis
is discretised with 20 nodes resulting in 19 one dimensional finite elements,
striking a balance between accuracy and computational cost. The choice of 20
spatial nodes is based on a convergence study building on the work detailed
in [Sch21b] for the conservative case. The viscous damping introduced to the
model is included in the convergence study here and the results are shown
in Figure 4.2. The prosthesis’ highest total deformation energy Wint during
a 1 second simulation in a gravitational field is used as a comparison value
when varying the number of nodes nnodes used to discretise the prosthesis.
Figure 4.2 shows the convergence of the internal deformation energy error ϵ
relative to a reference solution (computed on a very fine grid of nmax = 250
nodes), when increasing the number of nodes used to discretise the prosthesis.
The error is calculated for each considered number of nodes nnodes.

ϵ = ||𝕍int,n − 𝕍int,nmax ||
||𝕍int,nmax || (4.34)

Increasing the number of nodes leads to an increase in the forward dynamics
computation time. Due to the impact the computation time of the forward
dynamics has on the fuzzy forward dynamics simulation, 20 nodes are chosen
as a balance between accuracy and computational cost in this work.

8Undeformed refers to the strain free initial state of the precurved prosthesis.
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Figure 4.2: “Visualisation of the internal deformation energy error when vary-
ing the number of nodes in the model, based on [Sch21b] in order to find
a compromise between the computational cost and accuracy of the prosthe-
sis model. The compromise of 20 nodes is highlighted.” Figure and caption
quoted from [Sch22b].

This examination is based on the forward dynamics simulation, detailed in
the next section. Together with the two rigid bodies, the choice of 20 nodes
for the prosthesis’ discretisation leads to a total of 264 degrees of freedom for
the model, constrained by 132 internal constraints and 14 external constraints
(three for the hip, five for the knee and six for the ankle joint).

4.2.2 Forward dynamics simulation

To examine the behaviour of the leg with the prosthesis before including para-
metric uncertainty, the model is placed in a gravitational field orientated in
the negative z-direction and held in place at the hip with a spherical joint.
The resulting motion of the simulation is a swinging motion of the human leg
model with prosthetic foot, similar to the swing phase during the human gait
cycle. A variational integrator is used to approximate the dynamics, derived
from the discrete action principle for the discretised augmented Lagrangian,
see [Ley08b]. All derivatives and gradients in this work are calculated auto-
matically with CasADi [And19]. For the simulation shown in Figure 4.3, a
timestep of 0.001s is used. Furthermore, the Young’s modulus of the prosthe-
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Figure 4.3: “Simulation results of the swing movement for the human leg with
a predeformed geometrically exact beam model for the prosthetic foot.” Figure
and caption quoted from [Sch22b].

sis is reduced and it’s density is increased, compared to carbon fibre laminate,
in order to emphasise its deformation due to inertia. However, the simulation
also runs stably with the original material parameters. As can be seen in
Figure 4.4 the energy is exchanged between the potential, kinetic and internal
deformation energy. Due to the variational integrator, which is structure pre-
serving, the total energy of the system is not artificially reduced or increased
by numerical integration. The viscous damping is present, however, it’s influ-
ence is so small that it is not visible in the energy evolution plot.
”
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Figure 4.4: “Evolution of the different energy components over time for the
swing movement simulation.” Figure and caption quoted from [Sch22b].

4.2.3 Note on the finite element discretisation and numerical
stability of the simulation

As mentioned in Section 4.2.1, the prosthesis model is discretised with the
help of one-dimensional finite elements. The finite element method (FEM) is
a numerical technique that is used to obtain approximate solutions of bound-
ary value problems in engineering and mathematical modelling. The basic
concept of the FEM is to divide the model into smaller and simpler subdo-
mains called finite elements and then approximate the unknown field variable,
such as displacement or pressure. For more details on the FEM method see
[Hut04; Zie77; Red93; Log11]. The FEM involves three main steps, namely
discretisation, formulation and solution. Discretisation is the process of di-
viding the domain into elements and nodes. Formulation is the process of
deriving a system of algebraic equations that relate the nodal values of the
field variable to the given data. Solution is the process of solving the system
of equations to obtain the nodal values of the field variable, and then interpo-
lating them within each element to obtain the approximate solution over the
entire domain. The formulation step can be done in different ways, depending
on the nature of the problem and the desired accuracy. Some common meth-
ods are the direct method, weighted residual method and Galerkin method.
To achieve accurate results, the element shape and the interpolating shape
functions have to be chosen carefully.

In the current case, the beam is discretised into nnodes along the beam’s
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4.2 Modelling the human leg with a prosthetic foot

centreline and two nodes form one element. Then the internal deformation
energy of the beam can be calculated based on the director triad and position
of the nodes, see Section 4.2.1. Each node is associated with a position and
orientation, in essence turning each node into a rigid cross-section and the de-
formation energy is quantified by two neighbouring nodes via their orientation
and distance to each other.

While working with the model, it’s numerical stability is very sensitive to
parameter changes. Depending on the combination of timestep, material pa-
rameters and number of nodes used in the discretisation, the model would
compute stably and fast, or require more time and in the worst-case, not com-
pute at all. One possible reason for this sensitivity is the following condition.

The Courant–Friedrichs–Lewy (CFL) condition The Courant-Friedrichs-
Lewy condition, first introduced by Courant, Friedrichs and Lewy in 1928
see [Cou28], is a necessary condition for the convergence and stability of nu-
merical methods that solve certain partial differential equations (PDEs). It
arises in the numerical analysis of explicit time integration schemes, when
these are used for the numerical solution of PDEs that involve convection
or wave phenomena. The CFL condition states that the numerical domain of
dependence must contain the true domain of dependence, that is, the informa-
tion required to determine the solution at a given point must be accessible by
the numerical scheme. Mathematically, the CFL condition can be expressed
as C = ah

∆x
≤ Cmax where C is the CFL number, a is the wave speed in the

medium, h is the timestep, ∆x is the spatial step, and Cmax is a constant
that depends on the numerical scheme and the order of accuracy. The CFL
condition ensures that the numerical solution does not introduce unrealistic
oscillations or instabilities that are not present in the true solution. It also
implies a trade-off between accuracy and efficiency. An example for the ap-
plication of the CFL condition in computational fluid dynamics is shown in
[Bla15]. For more general references on numerical methods and stability for
PDEs see [Lev07].

4.2.4 Simulation scenarios

The following is quoted from my previous work [Sch22b] Section 3.5. Variable
names in the text and figures have been changed to better fit this thesis.
Figures and tables have been modified to suit the format of this thesis.
“
In the two exemplary scenarios analysed in this work, the leg moves under
its weight due to being placed in a gravitational field oriented in the negative
z-direction.
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Chapter 4 The biomechanical model

The first examined scenario is a pendulum swing of the multibody system,
where the prosthesis deforms due to inertia, as was already used to check
the models implementation with forward dynamics, shown as a timelapse in
Figure 4.3. The pendulum movement is similar to the swing phase occurring
during human gait (for more information on the biomechanics of the human
leg and the human gait cycle see for instance [Whi14]). The parameters used
for the simulation are summarised in Table 4.3.

Table 4.3: Prosthesis parameters and initial joint angles used for the fuzzy
forward dynamics simulation of the swinging motion.

Young’s modulus E 59.95e4 [N/m2]
Poisson’s ration ν 0.265
shear modulus G E

2(1+ν) = 23.69e4 [N/m2]
density ρ 8.55e3 [kg/m3]

viscous damping η 1.0
∆t 0.001 s

T 2 s

hip extension π
6 rad

knee flexion π
3 rad

The second scenario simulates the leg in a squatting position, that is the
thigh is horizontal with the shank vertical. The prosthetic foot is held in place
at two nodes. This is done by constraining two nodes to remain in their initial
position. However, rotation of the cross-sections at these nodes is permitted.
The prosthesis deforms under the leg’s weight periodically. Figure 4.5 shows
the initial configuration of the leg alongside a deformed configuration of the
resulting movement. The deformation is due to the mass of the leg in a
gravitational field. To emulate the process of realistic load on the prosthesis,
the mass of the shank is increased to represent the influence of body weight,
while the prosthesis uses the parameters derived with reverse engineering. The
parameters used for the simulation are summarised in Table 4.4.
”

4.3 Considering the layered structure of the prosthesis

As mentioned in Section 4.2, the parameters used there are based on the re-
sults of the reverse engineering in [Soe19]. Due to the layered structure of the
prosthesis, the values can not be used exactly. As can be seen in Figure 4.6,
the prosthesis consists of three layers. The two faces consist of carbon fibre
laminate, which are woven carbon fibre cloth in a resin matrix, visible on
the CT-scan in Figure 4.6 from [Soe19; Blo23] as intersecting dark lines (car-
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Figure 4.5: “The initial configuration of the leg with prosthetic foot for the
second scenario is shown in the back, with a deformed configuration shown in
the foreground.” Figure and caption quoted from [Sch22b].

bon fibres) separated by lighter regions (resin). The faces are separated by a
core layer, which has parallel lines running throughout in the CT-Scan. This
points towards a uniform foam or resin with the lines resulting from the man-
ufacturing process or another fibre resin layer, with parallel fibres. The core
layer’s material could not be determined exactly, since destructive methods
would have been required. Due to the similar contrast of the faces and core
in the CT-scan, the density of the layers is likely similar as well. To include
the layered structure in the model, two approaches are possible. Firstly, each
layer can be modelled as an individual geometrically exact beam with the re-
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Chapter 4 The biomechanical model

Table 4.4: Prosthesis parameters and initial joint angles used for the fuzzy
forward dynamics simulation of the prosthesis under load.

Young’s modulus E 59.958e7 [N/m2]
Poisson’s ration ν 0.265
shear modulus G E

2(1+ν) = 23.69e7 [N/m2]
density ρ 8.55e3 [kg/m3]

viscous damping η 1.0
∆t 0.001 s

T 2 s

hip flexion π
2 rad

knee flexion π
2 rad

shank weight 107 kg

Figure 4.6: A close up of the layers of the prosthesis from the CT-scan, based
on [Soe19; Blo23].

spective layer’s geometric and material parameters. Secondly, the layers can
be homogenised mathematically into a single layer, that represents the effect
of the layered structure. While the first approach allows for more modelling
accuracy, the gain in accuracy is likely not large enough when compared to the
huge disadvantage that it incurs. Due to the fact that each layer is modelled
as its own beam, the degrees of freedom of the model are also tripled in this
case. Furthermore, the constraints modelling the interaction between layers
further complicates the model adding to the computational cost of the simula-
tion. Thus, to avoid this increase in computational cost, the homogenisation
approach is chosen for this work. The following is based on the student thesis
[Blo23]. In mathematical terms, the separable stiffness matrices in Eq. (4.35)
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4.3 Considering the layered structure of the prosthesis

Figure 4.7: The dimensions required for the homogenisation approach, based
on [Bîr13; Blo23].

DΓ =

[
Gκ1A 0 0

0 Gκ2A 0
0 0 GA

]
and DK =

[
EI1 0 0

0 EI2 0
0 0 GJ

]
(4.35)

are replaced with the homogenised and no longer separable stiffness matrices
in Eq. (4.36)

DΓ
h =

[
A1 0 0
0 A2 0
0 0 A3

]
and DK

h =

[
C1 0 0
0 C2 0
0 0 C3

]
. (4.36)

Here, A1, A2 denote the effective shear stiffnesses, A3 denotes the effective
axial stiffness, C1, C2 denote the effective bending stiffnesses and C3 denotes
the effective torsional stiffness. The term separable refers to how in Eq. (4.35)
can be separated into geometry parameters and material parameters, while
in Eq. (4.36) this distinction is no longer visible. In [Blo23], two different
homogenisation approaches are examined. It should be noted, that the ho-
mogenisation described here is only valid for a rectangular cross-section with
two face layers and one core layer, which fits the prosthesis modelled in this
work. The homogenisation approach assumes, that the face layers have the
same thickness and consist of the same material. Additionally, each layer’s
material is assumed to be homogeneous and isotropic and the Poisson ratios
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of all materials is assumed to be equal [Bîr13; Sta22]. The standard approach,
denoted with "std", amounts to a summation over the individual layers, pro-
portional to their respective cross sections. The faces, which in this case have
the same dimensions and material parameters are denoted with f while the
core is denoted with c. The stiffness parameters for the standard approach
read

Cstd
1 = 2Ef If1 + EcIc1

Cstd
2 = 2Ef If2 + EcIc2,

Cstd
3 = 2Gf Jf + GcJc,

Astd
1 = 2Gf κ1Af + Gcκ1Ac,

Astd
2 = 2Gf κ2Af + Gcκ2Ac,

Astd
3 = 2Gf Af + GcAc

(4.37)

While simple, this approach neglects the interaction between the layers,
such as layer adhesion. It should be noted, that Ifi has to consider the dis-
tance from the centreline of the beam to the faces, due to the parallel axis
theorem, see [Cli17; Kuy16].

In order to account for the interlayer effects, a coupled approach developed
in [Mus53] and simplified for rectangular cross-sections with three layers in
[Bîr13] is used here. According to [Bîr13], the relevant differences in stiffness
occur in C1, C3 and A2, which are the effective bending stiffness, the torsional
rigidity and effective shear stiffness respectively. The dimensions of the layers
are visualised in Figure 4.7. All values are based on the parameters deter-
mined with reverse engineering in [Soe19]. The layer thickness tf = 0.5mm
is constant throughout the prosthesis, while the core layer thickness c varies
resulting in the total prosthesis cross-section height a = 2tf + c. The width of
the prosthesis cross-section is denoted with b and also varies along the pros-
thesis’ centreline. The stiffness parameters for the coupled approach, denoted
with "coup", then read

Ccoup
1 = Ef

btf d2

2 + Ef

bt3
f

6 + Ec
bc3

12 (4.38)

Ccoup
3 = b3

3

[
(cGc + 2tf Gf ) − 192b

π5

inf∑

n=0

C(n)

(2n + 1)5

]
(4.39)

Acoup
2 = κ

12b

a2
cGc + 2tf Gf

cρc + 2tf ρf + c(ρf − ρc)F ( πc
2a

)

(
ρf

tf d2

2 + ρf

t3
f

6 + pc
c3

12

)
.

(4.40)
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The term C(n) and function F (x) are defined in [Bîr13] as

C(n) =

[
Gc(Gc cosh(mtf ) tanh

(mc

2
)

+ Gf sinh(mtf ))

+ 2Gf (Gc − Gf )(1 − cosh(mtf )) tanh
(mc

2
)]

Gc cosh(mtf) + Gf sinh(mtf ) tanh
(mc

2
) , (4.41)

and

F (x) = cos(x)
x

ln
(

1 + sin(x)
cos(x)

)
for x ̸= 0, F (0) = 1. (4.42)

It is noted in [Bîr13], that the series in Eq. (4.39) converges very rapidly and
that F (x) is continuous.

4.4 Possible model improvements

The model introduced here can be improved in a few ways. So far, only
forward dynamics are considered. To completely simulate the human gait
cycle, the model would have to be transferred to an optimal control problem,
which considered things like ground contact opening and closing and control
torques and activation, see for instance [Koc17]. Furthermore, the shank and
thigh are currently modelled as complete and healthy bodies, as they are in
a healthy human being. While this is a valid assumption for this work, in
general, a prosthesis is not directly attached to the shank, but connects to
a shaft, that then connects to what remains of the patient’s shank. This is
currently not considered in this work, but could be modelled in future works
by changing the shank’s parameters. Similarly, the data for the thigh and
shank model’s mass and moments of inertia are based on a singular source.
More expansive modelling in this regard would further improve the model.
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Chapter 5

Applications

This chapter demonstrates the use of the previously introduced algorithms
and methods to propagate the uncertainty through the developed model of
the human leg with a prosthetic foot. The application of the Graph Follower
algorithm to examine the effect of marker position errors with the proposed
error model is also shown.

5.1 Validation of the code

Before looking at the different applications of the improved Graph Follower
algorithm and newly developed FRV-GFA, it should briefly be mentioned how
the code was verified. In this case, verification means to ensure that the code
implementation of the algorithm does what is intended. The Graph Follower
algorithm has been verified in [Eis19a; Eis19b]. The improvements made in
this work, are in turn examined in [Sch22b], including the difference between
the modifications introduced during this thesis and the original Graph Fol-
lower algorithm. The behaviour of the model can be validated in different
ways. The two cases examined here have similarities to classical mechani-
cal models. The swing case is similar to a double pendulum and the stance
case has similarities with a cantilever beam. To check the implementation of
the prosthesis and the underlying geometrically exact beam model, different
simulations were performed and checked for plausibility and compared to an-
alytical solutions where possible. With the individual parts of the algorithm
validated, different applications are possible and described in the following
sections.

5.2 Fuzzy forward dynamics of the prosthesis

The first uncertainty propagations were performed with the improved Graph
Follower algorithm and the leg and prosthesis model without homogenisation.



Chapter 5 Applications

5.2.1 Emulation of the swing phase

The following is quoted from my previous work [Sch22b] Section 3.6 & 3.7.
Variable names in the text and figures have been changed to better fit this
thesis. Figures and tables have been modified to suit the format of this thesis.
“
In the simulation of the leg’s swing movement, the chosen target output f is
the total deformation energy stored in the prosthesis at a certain time tj .

f =
nel∑

el=1

Wint,el (Γ(𝕢(p̃, tn), p̃, tj), K(𝕢(p̃, tj), p̃, tj)) (5.1)

The total deformation energy stored and released during gait in the prosthetic
foot is related to the burden of gait for a patient, see for instance [Wat99].
This means it is directly related to the walking comfort of the patient with the
prosthetic foot and is therefore an important measure for the prosthesis’ design
and it’s acceptance by the patient. Predicting the prosthesis’ behaviour with
respect to the target output is important during the design process. However,
predicting the movement of a double pendulum is difficult, given its chaotic
nature. Adding a flexible body with uncertain stiffness to the end of the double
pendulum further complicates the prediction. Including fuzzy uncertainty and
a target output that depends on both the behaviour of the multibody model
and the fuzzy uncertainty increases the need for algorithmic computation of
the desired target output. Figure 5.1 shows the calculated trajectories for the
minimal (0.9 Edet), deterministic (Edet) and maximum (1.1 Edet) values of
the prosthesis’ Young’s modulus. The Graph Follower algorithm is used to
calculate the target output envelopes. Analysing the uncertainty propagation
allows for an efficient calculation of the correlation between the parametric in-
put uncertainty, in this case the Young’s modulus, and the target output, the
stored internal deformation energy of the prosthesis. The results are shown
in Figure 5.2. The target output envelopes for the different alpha levels are
shown alongside the deterministic simulation’s result. The α = 1-level enve-
lope matches the deterministic solution, as expected. The total deformation
energy of the prosthesis oscillates which is represented well by the variational
integrator used in the forward dynamics which avoids artificial energy loss due
to numerical integration. As shown in the examination of the forward dynam-
ics of this model, the energy drain of the viscous damping is negligible for the
chosen parameters. While the input uncertainty is triangular and symmetric,
the output envelopes shown in Figure 5.2 do not inherit these properties.

The limitations of the Graph Follower algorithm can be seen at t = 1.4s
when the upper envelope from α = 0.0-level intersects the envelope from
α = 0.5-level.

However, when considering the entire evolution of the envelopes, the inac-
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Figure 5.1: “Evolution of the target output calculated for the minimal, deter-
ministic and maximum values for the Young’s modulus.” Figure and caption
quoted from [Sch22b].

curacy is very localised to parts of the target output where it varies strongly
in a short amount of time. If the main interest is in the envelopes magnitude
and not the membership function of the target output, the results can be fur-
ther improved, by combining all calculated α-levels envelopes and calculating
the resulting combined envelope, shown in Figure 5.3. In this figure, only
the highest and lowest values for the target output are considered alongside
the deterministic solution. This omits any knowledge about the membership
function and is thus no longer a fuzzy number9. However, this can be used to
check conditions set for the design of the prosthesis.

5.2.2 Emulation of the prosthesis during a squatting exercise

The second target output analyses the maximal local deformation energy over
all finite elements during the simulation at a certain time tj . This is related
to the structural integrity of the prosthesis during a load scenario.

f = max
nel

(Wint,el(𝕢, tj)) (5.2)

The calculations use the squatting pose configuration of the model and more
realistic parameters for the material of the prosthesis. Simulations were

9While details for shape of the membership function is discarded, the result can be
seen as a triangular fuzzy number, since the extremal target output trajectories correspond
to the alpha-level 0 cut of the input parameter.
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Figure 5.2: “Visualisation of the upper and lower envelope during the swinging
motion of the human leg with the prosthesis for the target output function
being the total stored energy within the prosthesis. The deterministic solution
is shown with a dashed line, while the envelopes for the different α-levels are
shown as full lines.” Figure and caption quoted from [Sch22b].

performed with realistic parameters. However, due to the prosthesis being
lightweight and stiff the Courant-Friedrichs-Lewy-condition [Cou28] requires
the simulation to run with a very small timestep which leads to very com-
putationally intensive forward dynamics simulations. The load applied to
the prosthesis emulates the load of the body during a squat exercise. The
envelopes of the target function are shown in Figure 5.4. As expected, the
prosthesis acts as a spring under the load of the shank. The leg moves up and
down periodically, while the uncertain Young’s modulus affects both the am-
plitude and the period of the oscillation. Since the amplitude and frequency of
the oscillating movement of the leg is directly related to the prosthesis’ defor-
mation, the oscillating movement can also be seen in the resulting envelopes
for the chosen target function. Artefacts from the simplifications necessary
for the Graph Follower algorithm to run with the high number of degrees of
freedom of the model are present, but can be reduced by increasing computa-
tional power.
”

5.3 Examining multiple fuzzy parameters

The following is quoted from my previous work [Sch22b] Section 4. Variable
names in the text and figures have been changed to better fit this thesis.
Figures and tables have been modified to suit the format of this thesis.
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Figure 5.3: “The minimal and maximum envelopes for total internal deforma-
tion energy in the prosthesis.” Figure and caption quoted from [Sch22b].
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Figure 5.4: “Upper and lower hulls for the α-level optimisation approximation
with the Graph Follower algorithm for the α-levels 1 (blue dashed) 0.5 (light
brown) and 0 (dark brown) with the maximum local deformation energy as
targeted output.” Figure and caption quoted from [Sch22b].

“
After demonstrating the application of the Graph Follower algorithm on the
complex multibody system of the human leg with a geometrically exact beam
prosthesis with a single fuzzy uncertain parameter, the next step is to examine
the structure with multiple uncertain parameters. For this, two aspects are
of interest. How does the method perform with regards to the increased
number of optimisation parameters and which parameters can be affected
with uncertainty.
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5.3.1 Numerical efficiency of Graph Follower algorithm with
multiple uncertain parameters

Here a brief evaluation of the Graph Follower algorithm with respect to its
numerical efficiency is discussed. A comprehensive evaluation of the Graph
Follower algorithm and comparison to other methods can be found in [Eis19b].
There, it is shown that the Graph Follower algorithm is suitable for propagat-
ing multiple fuzzy parameters since its computing time scales much less with
the amount of uncertain parameters than the benchmark algorithm Qua.Si.III.
To compare the modified Graph Follower algorithm used in this work, the run-
time for four simulations are compared, one with a single fuzzy parameter and
one with 11 fuzzy parameters, each for one and two seconds with 1000 and
2000 timsteps respectively. The resulting runtimes are shown in Table 5.1.

Table 5.1: Runtime of the simulations. The relative change is displayed on
the outside, with the increased complexity runtime divided by the simpler
simulation runtime.

Runtime Nt = 1000 Nt = 2000
Np = 1 3.8551e5 6.1432e5 1.59
Np = 11 4.0819e5 5.4863e5 1.34

1.05 0.89

This shows, that an increase in the amount of uncertain parameters does not
affect the computation time of the simulation strongly. This also means, that
focus should be put on reducing the computational time of the forward dy-
namics simulation, to reduce the computational cost when using the Graph
Follower algorithm to propagate fuzzy uncertainty.

5.3.2 Choice of fuzzy parameters
The main limiting factor when choosing which parameters to model as uncer-
tain, is the requirement, that the parameters are independent of each other
and without interaction [Möl04]. Interdependence or interaction between
fuzzy numbers can negatively affect the α-level optimisation by introducing
unwanted uncertainty. Possible uncertain parameters are the leg’s segment
length, the segment’s mass and moments of inertia, the segment’s initial ori-
entation and the prosthesis material parameters, namely Young’s modulus,
density and Poisson’s ratio. Here, affecting the segment length or initial posi-
tion with uncertainty would lead to fuzzy configurations of the leg. However,
the configuration is not independent, since it has to satisfy the internal con-
straints of the rigid bodies of the segments and the joint constraints and can
therefore not be affected by uncertainty without further investigation. The
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5.3 Examining multiple fuzzy parameters

prosthesis’ Young’s modulus, Poisson’s ratio and density parameters can safely
be assumed to be independent and are affected with uncertainty. For the leg,
its mass is affected with uncertainty, including the moments of inertia. These
values are not independent of each other, however the exact distribution of
the mass along the leg is unknown for an individual and difficult to measure
in vivo, which allows for an independent treatment in this work. This leads
to a simulation with a total of 11 uncertain parameters. All fuzzy parameters
are discretised with the same α-level cuts and for comparability also have the
same parameters and interval of pdet ± 0.1pdet as the squatting simulation.

5.3.3 Results

As in the previous simulation the movement is an oscillation. With the in-
creased number of fuzzy parameters, the period and magnitude of the oscilla-
tions differ more than in the simulation with only the fuzzy Young’s modulus
leading to larger envelopes, shown in Figure 5.5. Due to the multiple uncertain
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Figure 5.5: “Upper and lower hulls for the α-level optimisation approximation
with the Graph Follower algorithm for the α-levels 1 (blue dashed) 0.5 (light
brown) and 0 (dark brown) with the maximum local deformation energy as
targeted output and 11 uncertain parameters.” Figure and caption quoted
from [Sch22b].

parameters, visualisation of the parameter distribution and their correlation
to the envelopes is no longer trivial. Figure 5.6 visualises the parameter dis-
tribution for the α = 0 level with the individual trajectories calculated from
the corresponding parameter set and the resulting upper and lower envelope.
The left side shows the relative difference with respect to the upper (green)

93



Chapter 5 Applications

and lower (red) bounds for the parameters with the deterministic parameters
in the middle (blue). As can be seen, all of the parameters vary and lead
to individually extreme target outputs for a given [time node], shown on the
right of Figure 5.6. It can also be seen, that for instance the Poisson’s ratio (ν)
leading to the envelope varies a lot less than for instance the mass of the thigh
segment (L1,M ), giving an indication of which parameters have a strong effect
on the target output. Also of note, the moments of inertia for the z-direction
(Li,T 3) do not have an effect on the forward dynamics, since the movement
has no rotation around the z-axis. This means, that these parameters can
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Figure 5.6: “Visualisation of individual parameter sets p̃αk,i (left) from which
the individual target outputs fd,αk,i (right) are calculated via forward dynam-
ics. The upper and lower hulls for the α-level k are then calculated based on
all of these individual trajectories. The 11 fuzzy parameters are Young’s mod-
ulus (E), Poisson’s ration (ν), density (ρ), thigh mass (L1,M ), thigh moments
of inertia (L1,T 1−3), shank mass (L2,M ), shank moments of inertia (L2,T 1−3)”
Figure and caption quoted from [Sch22b].

vary without affecting the target output. This results in most trajectories of
the simulation shown in Figure 5.6 being based on the deterministic value.
”

5.4 Fuzzy simulation of the homogenisation procedure

As mentioned in Section 4.3, the prosthesis has three layers that are consid-
ered in the more advanced model examined here. Before including this model
in the leg model, the effects of uncertain parameters on the homogenisation is
examined separately. The Young’s moduli of the face and core are modelled
with fuzzy numbers and additionally the thickness of the face is assumed to
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5.4 Fuzzy simulation of the homogenisation procedure

be uncertain in height but constant along the prosthesis, following the re-
verse engineering results from [Soe19]. It should be noted, that the effect of
the uncertainty on the stiffness matrices (Eq. (4.36)) cannot be examined di-
rectly with the proposed methods, since the methods require a scalar target
function. However, it is possible to examine the uncertainty’s effects on the
prosthesis model and use the previously introduced target functions. As be-
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Figure 5.7: Hulls for the total internal deformation energy of the prosthesis
when considering homogenisation with uncertain parameters.

fore, two target outputs are considered, namely the position of the last node,
see Figure 5.7 and the total deformation energy, see Figure 5.8. The prosthe-
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Figure 5.8: Hulls for the position of the last node of the prosthesis when
considering homogenisation with uncertain parameters.

sis is fixed at the ankle and deforms due to a load applied to the tip of the
prosthesis. The uncertain parameters affect the stiffness of the prosthesis, as
described in Section 4.3 by modifying the stiffness matrix. However, since the
Graph Follower algorithm requires a scalar quantity for the optimisation, so
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the matrices cannot be the target output. Either a single entry in the stiff-
ness matrix can be observed or the target output functions previously defined
can be used. Since from an engineering and design perspective, the resulting
behaviour of the prosthesis is of interest, the target output for movement and
energy was used.

5.5 Fuzzy joint angle calculations

The following is quoted from my previous work [Sch24b] Chapter 3 & 4. Vari-
able names in the text and figures have been changed to better fit this thesis.
Figures and tables have been modified to suit the format of this thesis.
“
The epistemic marker position uncertainty is propagated through the joint
angel calculations for the flexion angle of the three joints (hip, knee, ankle) of
the left human leg during normal gait. All results are based on the same mea-
surement and on the values shown in Table 3.1 of the largest possible marker
deviations considered here. The results in Figures 5.10, 5.11 and 5.9(c) show
the envelope of possible joint angle evolutions.

Effect of the individual uncertainty sources on joint angles

Measurement system errors, marker (mis)placement and soft tissue artefacts
from Table 3.1, are examined for their effect on the flexion angles individually.
The results are shown in Figure 5.9. As expected, the joint angle envelopes
get larger if the considered maximum marker deviation increases from (a) to
(c).

Worst case scenario – cumulative uncertainty

In the worst case, all three considered uncertainty sources can be present at the
same time and add up to an even larger displacement in the marker positions.
The resulting envelopes are shown in Figure 5.10. The worst possible joint
angle error can be quantified by calculating a relative error for all α-levels.

This relative error ∆Φ relates the maximum difference between the upper
joint angle envelope, denoted with Φu

αk
(t) for an α-level αk, and the lower

joint angle envelope, denoted with Φl
αk

(t), to the maximum measured joint
angle without uncertainty Φ(t).

∆Φαk =
max

t∈[0,T ]

(
Φu

αk
(t) − Φl

αk
(t)

)

max
t∈[0,T ]

(Φ(t)) (5.3)

The resulting relative errors of the flexion angle for all joints are summarised
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in Table 5.2. The uncertainty of the joint angle, quantified by the differences
in the envelopes, can be very large throughout the entire gait cycle, especially
for joint angles with a small maximum value.

Table 5.2: The maximum joint angle envelope difference (∆) relative to the
largest measured joint angle over time for the various joints for every consid-
ered α-level. All values are in %. The relative error can be large for small
angles.

αk 0.75 0.50 0.25 0.00
∆hip flexion 27 54 81 107

∆knee flexion 17 35 51 68
∆ankle flexion 96 199 303 425

Comparing different methods of modelling the markers’ position error

For comparison and plausibility check of results from the new method, two
other methods of propagating the uncertainty in the marker positions, namely
specific calculations of different marker deviations and a calculation with ran-
dom marker deviations, are briefly examined. Figure 5.11(a) shows three
trajectories of the knee flexion angle, calculated with no deviation (blue) from
the measured positions and the largest positive (red) and largest negative
(green) deviations. The effect of random noise on all markers is shown in
Figure 5.11(b) and the result of the new method with epistemic uncertainty
and the Graph Follower algorithm is presented in Figure 5.11(c). All three
methods use the same spherical error model introduced in this work and the
same largest allowed deviation in the marker positions from Table 3.1 and are
applied to the same measurement data. When comparing Figure 5.11(a) to
Figure 5.11(b), it is visible that assuming a fixed error does not accurately
depict possible errors in the joint angle calculation. While Figure 5.11(b) al-
ready provides a more accurate representation of the effect of marker position
errors on the joint angle, it is difficult to draw conclusions about the level of
accuracy due to the randomness involved. In contrast, the proposed method
(Figure 5.11(c)) clearly shows the effect of errors on the joint angle calcu-
lations while at the same time providing a correlation between the marker
position error’s magnitude and the resulting error in the joint angle.
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Figure 5.10: “The resulting envelopes when considering all error sources cu-
mulatively.” Figure and caption quoted from [Sch24b].
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Figure 5.11: “Comparison of three methods to consider uncertainty in the
marker positions for knee flexion, namely calculating different specific cases,
using random noise and the calculation of the target output envelopes as
introduced in this work. (a) knee flexion calculated for no deviation and the
maximum positive and negative deviation. (b) knee flexion calculated with
the markers having random deviations. (c) the resulting envelopes from α-
level optimisation. All three examples use the same maximum allowed marker
deviations, while each marker’s deviation is modelled individually.” Figure
and caption quoted from [Sch24b].
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5.5.1 Discussion
This work10 examines the effect of epistemic uncertainty in the marker posi-
tion data from optical motion capture for gait analysis. We introduce a new
modelling method for marker position errors and a new method to analyse
the effects of these errors on subsequent joint angle calculations. As men-
tioned in the introduction, 3D marker based optical motion capture is often
used to benchmark other sensors without considering that the data gathered
by the optical system is affected by errors in the reported position of the
markers. Therefore, an estimation of how these errors affect subsequent cal-
culations and the possible validations of other sensors is crucial and methods
to model these are required. Previous research has examined the effects of
errors on subsequent motion capture data [Uch22; Mye15; Cam17], but epis-
temic uncertainty and the propagation of an error model as introduced in this
work has not been previously performed even though it allows for a more de-
tailed examination of the effects of marker position errors. Propagating the
uncertainty in the markers’ positions with the Graph Follower algorithm (Fig-
ure 5.11(c)), has the advantage of not only showing the worst possible cases
over the whole measurement period, but simultaneously provides more gran-
ular information on the possible joint angle errors with respect to the marker
deviations. Furthermore, this process also provides the reverse information
by showing the acceptable marker deviation, to still achieve a desired level of
accuracy for the joint angle. In comparison, just calculating three different
trajectories (Figure 5.11(a)) does not necessarily represent the possible worst
cases. While using random noise to model the uncertainty gives a better im-
pression of the possible joint angle error (Figure 5.11(b)), many calculations
would be necessary to allow any kind of reliable prediction of what the worst
joint angle at a given timeframe could be, which is a common attribute for
stochastic approaches. In contrast, fuzzy uncertainty is suitable for the type
of data uncertainty present in optical motion capture and efficiently calculates
the possible joint angle errors for multiple marker position deviations up to
the worst case. This bidirectional functionality of the suggested model and
method allows for better examination of marker position errors and how they
affect subsequent calculations. This contributes to the development of more
sophisticated methods of reducing errors during the measurements which will
benefit any subsequent calculations and diagnoses.

Furthermore, the results show and confirm, that even with small errors in
the marker positions, large deviations of the joint angle results may occur.
Due to the low computational effort required for this method and modelling
approach, it is especially well suited for clinical applications, allowing for an
evaluation of the joint angle during gait, alongside confidence intervals based
on possible errors during the measurement. This allows for better evalua-

10This refers to the publication [Sch24b].
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tions, without increasing the measurement or processing effort. Of course, this
method can be applied to other joint angles or body segments and movements.
Since the confidence in any subsequent diagnoses or treatment suggestions for
a patient, that are based on such a gait analysis, is crucial, the provided details
on errors and their effect will improve the information available for making
these decisions and suggestions.

An additional benefit of the method used here to propagate the uncertainty
through the joint angle calculations is, that it enables extracting the deviations
of individual markers that lead to the respective maximum joint angle for
any given time point of the measurement. This means that for any given
timeframe, the marker deviations that led to the extreme joint angle for a
given α-level can be obtained from the algorithm’s results. It should be noted,
that the deviations that lead to the largest deviation of the joint angle are not
constant and are not necessarily on the boundary of the error intervals. This
means the largest possible error in the joint angle, can already occur at much
smaller deviations in the markers’ positions, than are assumed from literature
values. For instance the KNEl marker only needs to deviate by 10 mm of
the possible 32 mm for the largest joint angle error to occur for the given
timeframe. This is also visible from the envelopes. The error interval for
a given timeframe of the envelopes does not stay constant throughout the
movement and is not symmetric. Including this knowledge in measurements
could improve confidence in the measurement and diagnoses, since errors are
explicitly considered without noticeably increasing the postprocessing effort.
”

Figure 5.12 shows the Euclidean norm of the marker’s displacement that
leads to the maximum joint angle error. It can be seen, that in some cases,
as for instance with ||pα,KNEl || for the upper envelope, the displacement does
not need to equal the maximum possible deviation based on the known error
sources from Table 3.1 to lead to a maximum joint angle error.

5.5.2 Conclusion and outlook
The following is quoted from my previous work [Sch24b] Section 5. Variable
names in the text and figures have been changed to better fit this thesis. Fig-
ures and tables have been modified to suit the format of this thesis.
“
[...] The new approach is used to examine the effect of deviations in the
marker positions based on known error sources and are quantified from litera-
ture values. The proposed method allows for an easy worst-case examination
of calculated joint angles based on assumed errors in the marker positions.
Furthermore, the opposite can also be examined with this method. If the
worst possible error in the joint angles has to be limited, the largest allowable
error in marker positions can be derived. This provides additional information
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Figure 5.12: Example of the Euclidean norm of individual marker deviations
for two markers (PSI (top) and KNE (middle), see Figure 3.8), during left
knee flexion (bottom). The full line shows the deviations resulting in the
upper envelopes and the dash-dotted line shows the deviations for the lower
envelopes. The colours correspond to the respective α-levels.

for decisions that are based on motion capture data and subsequent calcula-
tion.
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The method introduced here could also be used to investigate the sensitiv-
ity of subsequent calculations to marker models or to evaluate the validity of
postprocessing optimisation procedures for motion capture. These optimisa-
tion methods aim to compensate for uncertainty introduced by the motion
capture. However, the objective comparison of different compensation meth-
ods remains difficult. As shown in [Eis19a] the Graph Follower algorithm can
be applied within optimisation problems which could allow for better evalu-
ation of error reducing methods during gait analysis in the future. The new
model for marker position errors during motion capture introduced in this
work can also be expanded by basing the deviation of the markers on differ-
ent, unsymmetrical shapes and the limb’s motion and acceleration.
”

5.6 Failure probabilities from epistemic uncertainty analysis

Figure 5.13: Visualisation of the calculation of a probability from a fuzzy
number, based on [Sch24c].

To facilitate decisions, it may be helpful to reduce the uncertainty to a
single value, for instance a failure probability v. However, as mentioned in
Section 2.1 epistemic uncertainty is not a probability but a possibility. Thus, a
method to transform the possibility into probability is required. One method,
used for comparisons between methods in the joint work [Sch24c] based on
[Rez20] is to relate the areas (or for higher dimensional cases the volume)
underneath certain parts of the fuzzy number, as shown in Figure 5.13. To do
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this, a limit state function g(f̃(p)) has to be defined for which, as an example,
a value larger than zero signifies failure while a value smaller or equal to zero
signifies the safe operation of the system under examination. This limit state,
based on the target output function of the uncertainty analysis with fuzzy
numbers, then divides the area under the target output into a failure area Af

and a safe area As, as shown in Figure 5.13. It should be noted, that it may
be necessary to interpolate the membership function value of the limit state.
The failure probability can then be calculated with

v = Af

Af + As
. (5.4)

As mentioned in [Sch24c], the modelling of the input uncertainty with fuzzy
numbers greatly affects the resulting failure probability. Using the same
bounds as for a probabilistic approach results in greatly overestimated failure
probabilities, due to the discretisation and optimisation involved in the epis-
temic analysis. This highlights the importance of considering the combined
aspects of uncertainty modelling, uncertainty propagation and the subsequent
conclusions as a whole, and not as independent parts.

5.7 Polymorphic simulation of the human leg with a
prosthetic foot

To demonstrate the function of the FRV-GFA, see Section 2.7.2, it is applied
to the sitting configuration of the model of the human leg with a prosthesis,
detailed in Section 4.2.

5.7.1 Simulation of the sitting configuration with polymorphic
uncertainty

As before, this case reflects the prosthesis’ behaviour under load. The Young’s
modulus of the prosthesis is affected with polymorphic uncertainty. Table 5.3
summarises the parameters for the sample generation. The fuzzy number
samples of the fuzzy random variable are generated based on Eqs. (2.20) with
the values from Table 5.3. The prosthesis’ Young’s modulus is affected with
uncertainty. The lαrα-increments for the FRV are generated according to
Eq. (2.28) and Eq. (2.29) with a normal distribution N(1, 1), see Eq. (2.3),
for ∆pα=1 and ∆pl/r,α<1. Convexity is ensured by redrawing deltas that are
negative, resulting in the truncated normal distribution visible in Figure 5.14.
The mean for the generation of the deltas are the same for all α-levels with
∆p1 = ∆pl,α<1 = ∆pr,α<1 = 11.922e9 [N/m2]. A total of Ns = 10000
samples are generated and Np-disc = 100 points are used for the grouping. The
resulting minimum Young’s modulus in the samples is pmin = 29.422e9 [N/m2]
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and the maximum is pmax = 97.288e9 [N/m2]. The model’s parameters are
summarised in Table 5.3.

Table 5.3: Prosthesis parameters and initial joint angles used for the fuzzy
forward dynamics simulation of the prosthesis under load with polymorphic
uncertainty.

Young’s modulus E 59.958e9 [N/m2]
Poisson’s ration ν 0.265
shear modulus G E

2(1+ν) = 23.69e9 [N/m2]
density ρ 8.55e3 [kg/m3]

viscous damping η 1.0
∆t 0.001 s
T 2 s

hip flexion π
2 rad

knee flexion π
2 rad

shank weight 107 kg

As mentioned in Section 2.7, the first step is to generate samples of the
FRV, shown in Figure 5.14. The top plot shows 100 of the input parameter
samples, while the plots below show the distributions generating the deltas
for the different α-levels. The next step is grouping the samples. Figure 5.15
shows 100 of the total of 10000 generated samples, before grouping and af-
ter grouping, if the interval between largest and smallest drawn values for
the Young’s modulus is discretised with 100 points. The advantage of this
grouping is that the number of necessary optimisations (twice per interval
between two discretisation points) is no longer tied to the number of samples,
see Section 2.7. From the figures it is evident, that while greatly reducing
the computational cost required, the variability in the samples introduced
from the randomness is still well preserved. After the grouping, all possible
combinations for the intervals are created and checked if at least one sample
requires the interval. Any intervals that do not show up in at least one sample
are discarded. Then, the optimisation is performed for all intervals and the
resulting hulls are stored in a dictionary. Finally, all samples are assigned
their hulls from the dictionary based on the sample’s interval values, which is
the same result as if the Graph Follower algorithm had been applied to that
sample individually. To reassemble the FRV for the target output, a PDF is
fitted to the results for every α-level, either to the target output samples or
the respective deltas. Figure 5.16 shows the resulting FRV for a single time
node, when only examining the target output sample distribution. As can
be seen, the normal distribution fits the data well and the uncertainty of the
input parameter is clearly propagated through the model. However, since the

106



5.7 Polymorphic simulation of the human leg with a prosthetic foot

Figure 5.14: 100 of the input samples for the uncertain Young’s modulus along-
side the PDFs for the lαrα-increments.
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Figure 5.15: Showing 100 of the generated samples for the uncertain Young’s
modulus before and after grouping.

FRV is defined by the deltas, see Eq. (2.26), Figure 5.17 shows the same time
node when fitting the PDF to the deltas. Due to the grouping preformed in
sample generation, the deltas do not vary strongly. This distorts the fitting
process and the normal distribution is no longer suitable as a distribution.
This should be considered for further uncertainty analysis based on the re-
sults of this uncertainty propagation.

The goal of the uncertainty propagation is to calculate the target output
FRV for every time node. Due to the multidimensional nature of the resulting
time series of FRVs, visualisation is not trivial. A common way to visualise
stochastic data is to show the mean value µ along side one or multiple steps
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Figure 5.16: Resulting PDF for the target output samples for every α-level for
time node 20 when fitting a normal distribution to the target output values
different α-levels.

based on the standard deviation σ. Figure 5.18 shows the time series of the
target output every 25 time nodes. All time nodes were calculated, but more
time nodes would drastically reduce readability. Similarly, only 10 samples
are shown per time node, since more would again reduce readability. This
highlights one problem when dealing with uncertainty. The multidimensional
nature of the resulting data and, especially with aleatoric uncertainty, the
high number of samples make it difficult to visualise the results. To highlight
the expected oscillating motion, the mean of the target output is shown in
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Figure 5.17: Resulting PDF for the target output samples for every α-level
for time node 20 when fitting a normal distribution to the deltas of the target
output for each α-levels.

blue for α = 1. Figure 5.19 shows another alternative to visualise the target
output FRV. Here, two images are shown of the mean and standard deviation
for the FRV’s deltas. The red line indicates the mean for each considered
α-level. The left image shows the standard deviation of the distribution for
the left deltas, while the right image shows the standard deviation of the
distribution for the right deltas, each shaded from the mean to a maximum
of one standard deviation.
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Figure 5.18: Visualisation of the temporal evolution for some samples of the
target output. The mean of the target output for α = 1 is shown in blue.
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Figure 5.19: Visualisation of the fuzzy random target output for time node
220. The red line shows the mean µ of the FRV for each α-level. The left image
shows the standard deviation σ (green) for the left delta distribution and the
right shows the standard deviation σ (blue) for the right delta distribution.
The colour’s opacity transitions from full colour at a standard deviation of 0
to almost complete transparency at a standard deviation of 1.
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5.7.2 Interpretation
The results show the expected motion. For the squatting scenario, the model
behaves similarly to a cantilever beam, deflecting and returning to its origin
position due to the conservation of energy. The propagation of the parameter
uncertainty in the form of FRVs is successful, however the visualisation of the
result is not trivial. Some examples have been proposed, but depending on the
future use of the results, some visualisations are more helpful than others. For
example, if the result of these simulations is to be used for further uncertainty
simulations, visualising the FRV of the target output for a certain time node
as in Figure 5.16 or 5.17 provides the most information. On the other hand,
if the temporal evolution is of interest, Figure 5.18 may be more useful. As
can be seen in the results shown in Section 5.7.1, due to the convexity condi-
tion and the required redraw (see Subsection 2.7.2), the normal distribution is
not ideal for generating the lαrα-increments ∆pαi,l and ∆pαi,r, visible in Fig-
ure 5.14. Alternatively, the beta distribution can be used to avoid the redraw
process ensuring the convexity of the input parameter samples. However, this
raises the question of which data and what distribution should be used for the
fitting of the distributions for the target output FRV. When fitting the target
output FRVs using a normal distribution fitted to the α-level cut values fαi,l/r

of the target output parameter, as in Figure 5.16, the uncertainty is clearly
propagated through the system and well preserved and can thus directly be
used as input for further uncertainty analysis. However, when fitting the tar-
get output FRVs to the deltas of the target output ∆fαi,l/r, see Figure 5.17,
the resulting distribution is no longer suitable for the further use. Due to the
grouping of the input samples, the deltas for α-levels smaller than α = 1 have
the similar size, distorting the fitting process. This highlights, that when gen-
erating samples and fitting distributions to data, careful consideration of the
uncertainty model, propagation method and goal of the simulation is required.
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Chapter 6

Summary & Outlook

Summary This thesis was part of the SPP 1886 Prioprity programme sub-
project 14 titled ‘Dynamische Analyse prosthetischer Strukturen mit polymor-
pher Unschärfe’, which, when translated, reads ‘Dynamic analysis of prosthetic
structures in the presence of polymorphic uncertainty’. As evident from the
title, the goal is to examine a prosthesis in the presence of polymorphic uncer-
tainty. This can be subdivided into multiple sub-tasks. First of all, a model,
in this case the human leg with a foot prosthesis, has to be created. Once the
model is available, it has to be simulated dynamically, requiring an efficient
forward dynamics algorithm. Lastly, and the main focus of this work, is the
formulation of an algorithm that can deal with polymorphic uncertainty, that
is a combination of aleatoric and epistemic uncertainty.

Four major advancements were contributed to this goal in this thesis. The
first contribution was the creation of a full leg model with a flexible prosthesis.
A biomechanical model of the human leg was developed, based on anatomical
data. The prosthesis was modelled with the help of predeforemd geomet-
rically exact beam theory. A more complex variant of the model was also
developed by including the layered structure of the prosthesis in the model
via homogenisation. With this model, two distinct phases of the gait cycle,
namely the stance and swing phase, can be simulated, providing data on the
movement of the leg and the prosthesis under load. Following the successful
development of the model, epistemic uncertainty in multiple parameters was
propagated through this model, after substantially increasing the computa-
tional efficiency of the Graph Follower algorithm. The second contribution
consists of this computational efficiency increase of the Graph Follower algo-
rithm, by separating the timestep for the forward dynamics and the α-level
optimisation and adding a novelty check after the optimisation step of the
algorithm. The third major contribution, was applying the knowledge about
epistemic uncertainty propagation to develop a new error model and analysis
possibility for optical marker based motion capture. Epistemic uncertainty in
the marker positions during optical marker based motion capture has not yet
been considered elsewhere. With the new model, the effect of various error
sources during the measurements on subsequent joint angle calculations was
examined. The main advantages of the introduced method are that the er-
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ror model is well suited for the uncertainty present in marker position errors
and its bi-directionality. The method provides an efficient worst-case anal-
ysis of the effects errors in the markers’ positions have on the joint angles,
while simultaneously providing information on acceptable errors in the posi-
tion to prevent unacceptably large errors in the joint angles. The fourth and
final contribution is the expansion of the uncertainty model from purely epis-
temic uncertainty to polymorphic uncertainty in the form of fuzzy random
variables. This type of uncertainty can model both variability and inaccuracy
or imprecision, allowing for broader representation of occurring uncertainty.
Various efficiency increases in the algorithm were implemented to enable it to
propagate fuzzy random variables through the model of the human leg with
a flexible prosthesis. Overall, this thesis adds new methods to the big field of
uncertainty analysis.

Findings The main conclusion from working with uncertainty during the cre-
ation of this thesis, is that while uncertainty is omnipresent and therefore crit-
ical to explicitly consider, the required computational cost is still a problem.
Thus, when working with uncertainty or trying to include it in simulations, a
large part of the focus should be put on making the deterministic simulation at
the core of the uncertainty analysis as efficient as possible. It is also beneficial
for the uncertainty consideration, if the implementation of the core determin-
istic simulation allows for parallelisation of calculations. Another conclusion
is, that while the different aspects of the developed algorithms stand alone, it
is difficult to modularise them since the uncertainty model has to be adapted
and specialised for the underlying deterministic simulation. Furthermore, the
proposed model and method for joint angle calculations in the presence of
marker position uncertainty demonstrate that the effects of marker position
errors on subsequent calculations can be quite large. The development of ac-
curate models for these errors and their propagation through the calculations
helps in the development and verification of methods for compensating and
reducing the errors and their effects. Lastly, while working with uncertainty
in various forms, it became clear that the uncertainty model and propagation
method should not be considered without also considering its interactions with
the simulation and the desired goal of the calculations, as was evident when
calculating a failure probability based on a fuzzy target output.

Outlook There are many ways with which the progress of this work can be
continued. The most obvious expansion is the model itself. At the moment, a
forward dynamics simulation of the multibody model with rigid and flexible
bodies is at the core of the uncertainty analysis. Ultimately however, human
gait uses two legs and mathematically leads to a optimal control problem with
opening and closing ground contact. Of course, this type of model is much
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more computationally expensive, than the model currently used to evaluate
the algorithms introduced here. While in theory the application of the uncer-
tainty propagation algorithms is not limited by model size, the computational
time and/or power required becomes problematic. Two approaches can be
suggested to counter this problem. For one, the current or future model could
be optimised to greatly reduce the calculation time required. One possibility
would be to include the null-space matrix method into the model, see [Bet05],
however, this proved problematic when paired with CasADi [And19]. Alter-
natively, the implementation of the code can be further improved. Lastly, the
algorithms can be investigated for further improvements. Section 2.7.5 details
some of the possible options, the biggest one being parallelisation.
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