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Abstract

The heart is a fascinating organ whose seemingly simple function of mechani-
cally pumping blood throughout the body is ensured by a complex interaction
of mechanical, electrical, chemical and biological mechanisms. However, com-
plex systems inherently bear the risk of disruptions, causing a variety of
cardiovascular diseases (CVD) such as myocardial infarction, heart failure,
arrhythmia, and hypertension. The field of biomechanics is playing a key role
in the fundamental research concerning CVDs. In this context, computational
modelling and simulation of the cardiovascular system are crucial in furthering
the understanding of CVDs, enhancing diagnostic capabilities, and developing
patient-specific therapeutic interventions. Moreover, computer models can
facilitate the development of novel medical devices, such as cardiac assist
devices (CaAD) comprised of dielectric materials. In this thesis, the focus is
on the development of two types of computational muscle models, specifically
a cardiac muscle model based on biological tissue and an artificial muscle
model based on dielectric materials. The work on the cardiac muscle model
primarily focuses on the modelling of the orthotropic cardiac tissue structure.
The developed tissue structure model (TSM) is based on a discontinuous
Galerkin framework to accurately assess the transmural path and thickness in
the myocardial wall. The framework enables more accurate modelling of the
orthotropic tissue structure compared to established methods. Moreover, due
to the modularity, the framework can be easily integrated into other TSMs.
In this regard, transmural fibre and sheet angle rules are proposed for the
left ventricle based on diffusion tensor magnetic resonance imaging (DT-MRI)
data and demonstrate enhanced fidelity in representing the measurement data
compared to existing rules. A study about the influence of different TSMs on
important characteristics of cardiac function, based on an electromechanical
model of the cardiac tissue, underscores the significant influence of the TSM.
The artificial muscle model is inspired by the idea of an innovative concept for
cardiac assist devices (CaAD) based on dielectric elastomers. However, there
is a dearth of computational models that are able to simulate the complex
electromechanical, dynamic, and viscoelastic behaviour of such a dielectric
elastomer actuator-based CaAD. In this thesis, the computational model of the
artificial muscle is based on an electromechanical shell formulation, including
dynamics and viscoelasticity. The variational formulation of the dynamic, vis-
coelastic, and electromechanical shell is derived from the Lagrange-d’Alembert
principle. A variational time integration ensures a good long-term energy
behaviour. To demonstrate the potential of the model, numerical examples,




including different geometries as well as deformation states, are presented.
Overall, the proposed TSM, in conjunction with the improved transmural fibre
and sheet angle rules, is a robust, efficient and accurate method by which to
compute the orthotropic tissue structure for finite element models of the cardiac
tissue. Furthermore, the significant influence of different TSMs on important
characteristics of cardiac function is demonstrated. The electromechanical
shell model proves to be a promising approach towards the development of
patient-specific CaADs based on dielectric elastomer actuators (DEA).




Kurzfassung

Das Herz ist ein faszinierendes Organ, dessen scheinbar einfache Funktion,
das mechanische Pumpen von Blut durch den Koérper, durch eine komplexe
Interaktion zwischen mechanischen, elektrischen, chemischen und biologischen
Vorgingen gewéhrleistet wird. Allerdings bergen komplexe Systeme inhérent
das Risiko von Stérungen, die verschiedene Herz-Kreislauf-Erkrankungen wie
Myokardinfarkt, Herzinsuffizienz, Arrhythmie und Hypertonie verursachen
konnen. Einen wichtigen Baustein in der grundlegenden Forschung zu Herz-
Kreislauf-Erkrankungen stellt das Gebiet der Biomechanik dar. Comput-
ergestiitzte Modellierung und Simulation des Herz-Kreislauf-Systems im Bere-
ich der Biomechanik sind von entscheidender Bedeutung fiir ein weitreichen-
deres Verstandnis von Herz-Kreislauf-Erkrankungen, die Verbesserung der
diagnostischen Moglichkeiten und die Entwicklung patientenspezifischer ther-
apeutischer Mafinahmen. Dariiber hinaus kénnen Computermodelle genutzt
werden, um die Entwicklung neuartiger medizinischer Geréte, wie z. B. Herzun-
terstiitzungsgeréte aus dielektrischen Materialien, zu unterstiitzen. In dieser
Arbeit liegt der Fokus auf der Entwicklung zweier Muskelmodelle: einem
kardialen Muskelmodell basierend auf biologischem Gewebe und einem kiin-
stlichen Muskelmodell basierend auf dielektrischen Materialien. Beim kardialen
Muskelmodell steht die Modellierung der komplexen orthotropen Struktur des
Herzgewebes im Vordergrund. Das entwickelte Gewebestrukturmodell basiert
auf einem Discontinuous-Galerkin-Ansatz, um den transmuralen Pfad und
die Dicke der Myokardwand prézise zu bestimmen. Die Methode ermoglicht
eine genauere Modellierung der orthotropen Gewebestruktur im Vergleich zu
etablierten Methoden. Aufgrund der Modularitit kann die Methode problemlos
in bestehende Gewebestrukturmodelle integriert werden. Zusétzlich werden
transmurale ,fibre“- und ,sheet“-Winkelfunktionen fiir die linke Herzkammer
auf Basis von Diffusionstensor-Magnetresonanztomographie-Daten entwickelt,
welche die Messdaten deutlich besser abbilden kénnen als bisher verwendete
Funktionen. Eine Studie {iber den Einfluss der orthotropen Gewebestruktur auf
wichtige Charakteristika der Herzfunktion, basierend auf einem elektromech-
anischen Modell des Herzgewebes, unterstreicht den signifikanten Einfluss
verschiedener Gewebestrukturmodelle. Das kiinstliche Muskelmodell basiert
auf der Idee eines innovativen Konzepts fiir kardiale Unterstiitzungssysteme
durch dielektrische Elastomere. Allerdings mangelt es bisher an comput-
ergestiitzten Modellen, um das komplexe elektromechanische, dynamische und
viskoelastische Verhalten solcher Unterstiitzungssysteme zu simulieren. In
dieser Arbeit beruht das Modell des kiinstlichen Muskels auf einer elektromech-

xi



anischen Schalenformulierung, die Dynamik und Viskoelastizitéat beriicksichtigt.
Die variationsbasierte Formulierung der dynamischen, viskoelastischen und
elektromechanischen Schale wird ausgehend vom Lagrange-d’Alembert-Prinzip
hergeleitet. Eine variationsbasierte Zeitintegration gewéahrleistet ein gutes
Langzeit-Energieverhalten. Um das Potential des Schalenmodells zu demonstri-
eren, werden diverse numerische Beispiele mit unterschiedlichen Geometrien
und Deformationszustidnden présentiert.

Insgesamt stellt das entwickelte Gewebestrukturmodell in Verbindung mit den
verbesserten transmuralen ,fibre“- und ,sheet~-Winkelfunktionen eine robuste,
effiziente und genaue Methode zur Berechnung der orthotropen Gewebestruk-
tur fiir Finite-Elemente-Modelle des Herzmuskels dar. Es konnte zudem
der signifikante Einfluss verschiedener Gewebestrukturmodelle auf wichtige
Charakteristika der Herzfunktion gezeigt werden. Das elektromechanische
Schalenmodell zeigt sich als ein vielversprechender Ansatz auf dem Weg zur
Entwicklung von patientenspezifischen kardialen Unterstiitzungssystemen auf
Basis von dielektrischen Elastomeren.
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1 Introduction

According to the 2021 report of the European Society of Cardiology (ESC),
cardiovascular diseases (CVDs) remain the leading cause of mortality in Europe.
The number of 12.7 million new cases of CVDs across Europe (ESC member
countries) has been estimated for 2019 (latest available data) with a prevalence
of 113 million people living with CVDs. The healthcare costs for the European
Union’s (EU) economy associated with CVDs were estimated to be approx-
imately 200 billion Euros per annum. These health and economic statistics
underscore the prevailing interest in reducing the mortality and morbidity
associated with CVDs so as to lower the cost burden on the relevant healthcare
systems. Ongoing fundamental research and development have already led to
a better understanding and means of prevention as well as to a continuous
improvement in clinical diagnoses and treatments for CVDs [1]. A key role
in the fundamental research concerning CVDs falls to the field of biomedical
engineering, bridging the gap between engineering and medicine. The field of
biomedical engineering applies engineering principles to medicine and biology
with a view to developing innovative solutions to medical challenges. The field
of biomedical engineering encompasses various subfields, including imaging
technologies, medical devices, tissue engineering, and biomechanics, etc. This
thesis focuses on two specific aspects, namely the biomechanical modelling of
the cardiac muscle as well as an artificial muscle for cardiac devices.

Cardiac muscle models In the context of biomedical engineering in cardiac
research, biomechanics and computational biomechanics are powerful tools
through which to investigate and better understand CVDs, improve diagnoses
and develop patient-specific treatments [2, 3, 4, 5, 6, 7, 8, 9]. Traditionally, com-
putational biomechanics has applied numerical methods established in engineer-
ing, such as the finite element method (FEM) to study, inter alia, the mechanics
of the cardiac muscle or vascular system. Nowadays, these computational mod-
els go beyond the realm of pure mechanics and encompass multi-physics models
that incorporate various disciplines, including electromechanics or electrochem-
istry [10] and are especially useful in cases of risk minimisation (e.g., drug
testing), circumvention of challenging experimental setups and costs or ethical
restrictions, surgical simulation and development of patient-specific devices.

Artificial muscle models in cardiac application A particularly promising ap-
proach, and one that has gained increasing attention, especially during the
last decade, is the use of artificial muscles (e.g., pneumatic, electromechan-
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ical, and electrochemical) to serve as cardiac assist devices (CaADs), see
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. The concept of artificial muscles serving
as CaADs is grounded in the fundamental idea of applying external mechanical
pressure to the heart and its associated vessels, thereby providing support
to cardiac function without having direct blood contact. This concept has
a long history, see [21] for mechanical biventricular assistance via glass cup
and [22] for a review on direct mechanical ventricular actuation. Notably,
the application of artificial muscles based on dielectric elastomer actuators
(DEAs) as CaADs is of great interest. In [12, 14], thin and curved DEAs
serve as an augmentation of the ascending or descending aorta [12, 14]. In
[13], the use of dielectric elastomers for all-soft artificial hearts is discussed.
DEAs offer a unique combination of softness, flexibility, and the ability to
undergo large deformations in response to electrical stimulation, making them
ideal candidates for replicating the mechanical properties of soft biological
tissue. Incorporating DEAs into cardiac research has presented exciting new
opportunities for the development of innovative and more effective treatments
for cardiac diseases.

The current stage of research of both, the modelling of cardiac as well as
artificial muscles based on DEAs, motivates this thesis. Further advancements
in cardiac and artificial muscle models are of significant interest to better
understand CVDs, improve diagnoses and develop patient-specific treatments
and devices. In Section 1.1, a brief introduction to cardiac physiology is given.
To define the objectives of this work, a review of existing cardiac muscle models,
as well as artificial muscle models based on DEAs, is given in Section 1.2 and
Section 1.3, respectively. Chapter 1 concludes with the definition of the main
objectives of this work in Section 1.4.

1.1 Cardiac physiology

The heart, an efficacious and pulsatile organ, operates as the principal driving
force of the circulatory system. It weighs roughly 150-320 grams in a healthy
adult [23, 24, 25] but the weight differs depending on various factors such as
age, sex and physical activity. The cardiac anatomy comprises four chambers,
namely the right and left atria and the right and left ventricles, see Fig. 1.1 (a).
The atrioventricular valves — known as the mitral and tricuspid valves — are
situated between the atria and ventricles. The semilunar valves, which include
the aortic and pulmonary valves, are located between the ventricles and
the arteries. The heart’s walls are composed of three layers, namely the
epicardium (thin outer layer), myocardium (thick middle, muscular layer), and
endocardium (thin inner layer). The main function of the heart is to pump blood
through the body, supplying the organism with oxygen and nutrients while
transporting metabolic waste products to the kidneys and liver. The pumping
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Figure 1.1: (a) anatomy human heart. (b) pressure-volume-loop left ventricle.

function of the heart involves a cyclic sequence of four phases, see Fig. 1.1 (b):
isovolumetric contraction (D), ejection (2), isovolumetric relaxation (@) and a
refilling phase (4). In the isovolumetric contraction phase, the atrioventricular
valves and semilunar valves remain closed. The oxygenated blood (red arrow)
in the left ventricle and deoxygenated blood (blue arrow) in the right ventricle
are compressed by the active contraction of the myocardial muscle cells. Due
to the nearly incompressible nature of blood, a sudden blood pressure increase
occurs while the volume of the left and right ventricle cavities is approximately
conserved. As soon as the pressure in the cavities surpasses the pressure in
the aorta and pulmonary artery, the semilunar valves open and the ejection
phase takes place. Blood is ejected under high pressure and the ejection
remains active until a certain volume of blood is ejected (stroke volume) and
the ventricular pressure falls below the pressure of the aorta and pulmonary
artery, causing the closure of the semilunar valves. This event marks the start
of the isovolumetric relaxation state in which the muscle starts to repolarise
leading to a further decrease in pressure, while the volume of ventricle cavities
are approximately preserved. The filling phase starts when the pressure in the
cavities drops below the pressure in the right and left atria, causing the opening
of the atrioventricular valves and, subsequently, an inflow of blood from the
circulatory system (superior and inferior vena cava and pulmonary veins).

1.2 Computational models — cardiac muscle

The modelling of cardiac tissue has a long history and dates back to the middle
of the last century. The first model describing the action and pacemaker
potential of the cardiac muscle was developed by Noble in 1960 [26, 27].
This model is based on the Hodgkin and Huxley equations proposed by [28].
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Figure 1.2: Basic workflow of FEM-based cardiac muscle models. The particu-
lar focus of this work is on the myocardial tissue structure model
and its influence on cardiac function (box with blue frame).

Mechanical models of the cardiac muscle tissue have been initially described
based on simplified geometries, e.g. spherical [29, 30], ellipsoidal [31, 32, 33]
and cylindrical [34] geometries. First approaches to include the anisotropy of
the myocardial tissue with transmurally changing fibre orientation can be found
in models by [35, 34]. Earliest FEM-based models have been developed by
[36, 37]. In the late 1980s and early 1990s, FEM has gained increasing attention
in cardiac modelling [38, 39, 40, 41, 42, 43]. Models advanced through more
complex geometries (e.g. biventricular models with detailed fibre orientation
and a physical contraction model [44]). Nowadays, FEM models have become
the gold standard for patient-specific cardiac modelling. Various FEM models
exist, e.g., four chamber heart models including atrial structures [45, 46, 47,
48, 49, 50], patient-specific models of heart valves [51, 52|, arrhythmia risk
stratification [6, 53], ablation therapy [54], electromechanics [55, 56], model
order reduction techniques to reduce the computational costs [57] or models
representing atrial mechanics and closed-loop circulation [58, 59, 60]. However,
other approaches such as mesh-free methods [61, 62] or smoothed finite element
methods (SFEM) [63, 64, 65] have been proposed as alternatives. Reviews on
patient-specific cardiovascular computational modelling and computational
models in cardiology can be found in [66, 67].

In this thesis, the focus is on a FEM-based model of the cardiac muscle.
Therefore, the schematic structure of a FEM-based cardiac muscle model is
depicted in Fig. 1.2, exemplified through a patient-specific left ventricular
(LV) geometrical model. In the following section, a brief review of the relevant
literature concerning the main model blocks from Fig. 1.2 is provided. It is
worth noting that the review provided is a condensed summary of significant
references pertaining to this work and does not aim to be complete.
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Medical imaging, geometry and mesh Over the last decades, the complexity
of geometrical models of the heart has increased considerably. Starting with
simple geometrical shapes of single cavities, typically the left ventricle (which
generates the primary pumping force), researchers have developed anatomically
more accurate models based on histoanatomical slices (e.g., for rabbit and
canine models see [43, 68]). Moreover, the field of computer-aided design
(CAD) has been advancing rapidly, allowing for geometrical models of almost
arbitrary complexity. The emergence of image-based models has facilitated
the acquisition of complex patient-specific geometrical models, both via in-
vivo and ex-vivo measurements. Nowadays, magnetic resonance imaging
(MRI) [69, 70, 71, 72, 73|, echocardiography [74] and computer tomography
[75, 76, 77, 78] are commonly used to obtain patient-specific information about
the geometrical properties. Based on the medical imaging data, via manual
or automatic segmentation and surface reconstruction, a detailed geometrical
model can be derived. Subsequently, the geometrical model is discretised
with finite elements by using various types of algorithms, such as Delaunay
triangulation [79] or Advancing Front Techniques [80].

Passive material models To characterise the passive material properties of
cardiac tissue, various mechanical tests have been performed to develop appro-
priate passive material models. Biaxial mechanical properties of the passive
myocardial tissue (canine/human myocardium) are described for instance in
[81, 82, 83, 84]. Nowadays, there is consensus within the biomechanical com-
munity that the passive myocardial tissue can be interpreted as an orthotropic
material [85, 86, 87, 88]. This assumption is supported by various experimental
studies, including the results for the shear properties of passive ventricular
myocardium of pig hearts in [89] and biaxial tension/triaxial shear tests of
humans in [88]. Over the past few decades, various types of passive material
models have been proposed. These are comprised of isotropic [90], transversely
isotropic [91, 92, 93, 94| and orthotropic [95, 96, 97, 87] material assumptions.

Electrophysiology Since the pioneering work of Hodgkin and Huxley in 1952
[28], numerous mathematical models have been developed to describe the
electrophysiology of the heart. These models can be divided into physiological
and phenomenological models. In 1962, a first physiological model of cardiac
tissue was developed [26, 27]. Subsequently, various physiologically motivated
ionic models have emerged to describe the membrane currents of cardiac cells
[98, 99, 100, 101, 102, 103, 104, 105, 106]. Ionic models have numerous ap-
plications, including drug testing on a cell drum consisting of three distinct
cardiac stem cells [107], as well as drug investigations pertaining to biven-
tricular geometry [53]. However, physiological models are computationally
expensive and not well suited, e.g. where phenomena arise across larger spatial
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dimensions, such as re-entrant cardiac arrhythmias. Therefore, phenomeno-
logical models were developed aiming to capture main characteristics of the
cardiac electrophysiology such as the transmembrane potential (TP) evolution,
(see [108, 109, 110, 111, 112, 113]), having a significantly fewer equations and
unknowns than physiological models. Thus, phenomenological models are less
complex, easier to implement and reduce computational costs [114].

Electromechanical coupling A coupling between the TP evolution and passive
material response is of fundamental importance to translate a change in TP
into an excitation-induced active contraction or relaxation of cardiomyocytes,
respectively. Two coupling approaches are commonly used, specifically active
stress and active strain approach. The active stress approach, which involves
adding an active contribution to the mechanical stress, is the most commonly
used method, see [115, 116, 117]. The active strain approach is based on a
multiplicative decomposition of the deformation gradient into a passive elastic
and an active part, see [118, 119, 120, 114]. A combination of these approaches
is proposed, e.g., in [121]. Apart from the excitation-induced contraction of
cardiac cells, the depolarisation and, subsequently, the contraction of cardiomy-
ocytes can also be triggered by the opening of ion channels in response to
stretching, which is commonly known as mechanoelectrical feedback (MEF)
[122, 123]. The MEF can shorten TP duration or the time course of repo-
larisation [124], break up spiral waves [125] and cause premature ventricular
excitation [126, 127]. This phenomenon assumes a crucial role in elucidating
the intricate interrelationship between the electrophysiological and mechanical
mechanisms of cardiomyocytes [128, 129]. Often, electromechanical simulations
are solved in a decoupled manner {130, 46] or staggered approach for one-way
coupling formulations [131, 132, 128, 133|. To study the effect of the MEF,
strongly coupled models are required [115, 134, 135, 136].

Haemodynamics The most common approaches to modelling haemodynamics
for FEM-based cardiac models can be divided into computational fluid dynamics
(CFD) [137], fluid-structure interaction (FSI) [138] or lumped parameter [139]
models. With the advancement of medical imaging technologies and therewith
accurate geometrical models, CFD and FSI have gained increasing attention.
CFD models, which are based on the Navier-Stokes equations, can be used
to determine detailed information about blood pressure, pressure gradients,
velocities, wall shear stresses, the effects of arterial geometry etc. FSI models,
on the other hand, couple fluid dynamics with structural mechanics to simulate
the interactions arising between blood flow and the surrounding tissues to gain
insight into mechanical properties such as deformation and stress distribution in
the tissue or to study the effects of haemodynamic factors on the development
and rupture of cerebral or aortic aneurysms [140]. However, for certain research
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questions, it may not be necessary to employ highly detailed CFD or FSI
models. Rather, simplified lumped parameter models that accurately capture
the pressure-flow relationship of the circulatory system may be adequate. These
models can be especially useful in substituting computationally costly FSI/CFD
models if detailed information about the blood flow/fluid-tissue interaction is
not required. Windkessel models are a well-known class of lumped parameter
models. These describe the cardiovascular system as being analogous to an
electrical circuit with resistors and capacitors. The most commonly used
Windkessel models are the two-element and the three-element models [139].
These models are often used to study the dynamics of arterial pressure and
blood flow, estimate cardiac output in patients with heart failure or analyse
the effects of arterial stiffness on blood pressure and cardiac function.

Mechanical boundary conditions The definition of physiologically accurate
mechanical and electrical boundary conditions (BCs) in a FEM-based cardiac
model is essential to obtain meaningful simulation results. Mechanical BCs
basically comprise two physiological mechanisms, namely blood flow within the
chambers (blood pressure and shear stresses acting on the endocardium) and
external support of the cardiac muscle (elastic properties of the surrounding
structures including pericardium acting on the epicardium as well as the
connection to the great vessels such as the aorta, pulmonary arteries and
veins, superior and inferior vena cava). However, for computational models
of single ventricles, often simplified BCs are defined. For the simulation of
the left ventricle (represented by truncated ellipsoidal geometry), the outer
baseline is spatially fixed so only in-plane movement of the base surface is
assumed [141]. Multiple BCs exist for the pericardium, e.g. a no penetration
condition [142, 143], constraining movement in the normal direction of the
epicardial surface [135] or spring-dashpot systems on the epicardial and base
surfaces [130] for truncated geometries (see [144, 60]). Commonly used BCs
for four-chamber geometries involve a combination of Dirichlet BCs applied at
the cut-off region of the vessels, an elastic apical boundary condition [142, 145]
or springs attached to the great vessels [146]. In [46], connector elements are
applied on the epicardial surface, thereby constraining the movement along the
pericardial-epicardial surface. In [147], the pericardial-myocardial interaction
is modelled via frictionless sliding.

Electrical boundary conditions The heart’s electric activation begins in the
sinoatrial node in the right atrium and spreads through the atria before reaching
the atrioventricular node. The atrioventricular node connects to the Purkinje
network through the bundle of His (after the cardiologist Wilhelm His) which
branches throughout the ventricles. In computational models, the electrical
activation is modelled with different levels of complexity, for instance, models
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of the Purkinje network via a fractal tree algorithm [148, 149] or cardiac
activation mapping (e.g., via neural networks [150]). Furthermore, surrogate
models of the Purkinje network exist, e.g. via faster electrical conduction on
endocardial structures [59] or the detection of Purkinje network junctions
locations from electrical measurements [151, 152].

Orthotropic tissue structure In a FEM-based cardiac model, the specific tissue
structure of the myocardium, atria, vessels, etc. needs to be taken into account.
The orthotropic myocardial tissue comprises a distinct fibre direction f, sheet
normal direction n and sheet direction s, which constitute a right-handed
orthonormal coordinate system, see Fig. 1.3 (c¢) and [87]. The fibre and
sheet direction vary transmurally from the endocardium to the epicardium.
This variation can be observed via histological studies [153, 154, 33, 85, 155],
diffusion tensor magnetic resonance imaging (DT-MRI) [86, 156, 69, 157, 158],
elastography [159], ultrasound [160], micro computed tomography or X-ray
phase contrast [161, 162]. Numerous tissue structure models (TSMs) have
been developed to compute the characteristic orthotropic tissue structure in
computational heart models. Nowadays, the most widely used methods for
assigning an orthotropic structure to a finite element model of the myocardium,
atria or whole organ, are either image-based [158, 71, 163, 72, 164] or rule-
based [165, 166, 85, 167, 166, 168, 169, 170, 171]. Rule-based methods (RBMs)
have to be used, wherever no direct mapping from the measurement onto
the finite element model is possible or else available (this depends on noise
effects, the complexity of the geometry, measurement technique, etc.). These
methods/algorithms are denoted "rule-based" as they describe the orthotropic
tissue structure with mathematically formulated rules which are, in turn, based
on experimental observations. However, RBMs lead to a certain method-
specific orthotropic tissue structure, which subsequently influences the heart
simulation. Various studies show the decisive influence of the orthotropic
tissue orientation on the mechanical and electrical function of the heart (see
[172, 173, 174, 175, 176, 177]). Moreover, the tissue structure can be altered
during cardiac failure or disease [71, 178, 179]. Therefore, a precise definition of
the orthotropic tissue structure in FEM-based cardiac models is indispensable.
As shown in Fig. 1.3 (b) and (c), the rules in RBMs are often describing the
change in fibre angle o and/or sheet angle 8 along the transmural path (i.e.,
the path through the wall from the endocardial to epicardial surface). The arc
length of this path is commonly normalised and termed the so-called normalised
transmural depth d € [0, 1], see Fig. 1.3 (b). The normalised transmural depth
assigns to each material point in the myocardium a scalar value between 0
and 1 (0 on endocardium, 1 on epicardium). The transmural evolutions in
fibre angle o and sheet angle 8 are defined with respect to an orthonormal
reference coordinate system, e.g. ¢,l,r corresponding to the circumferential,
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longitudinal and radial directions, respectively. In summary, the following
ingredients are required to compute the rule-based local orthotropic tissue
orientation f, n and s:

e a local reference coordinate system c, I, r
e normalised transmural depth d
e rules for the fibre angle o and sheet angle 3 over d

Various approaches to defining the longitudinal direction I exist, for instance,
a globally constant [168] or local [167, 169, 171] longitudinal direction. This
simplification of a globally constant longitudinal direction can lead to inac-
curacies or singularities in geometrically complex regions of the heart (e.g.,
owing to endocardial structures), as also described in [167]. The local trans-
mural direction 7 can be determined based on various approaches (e.g., the
most proximal distance to the endo- and epicardium), 3-D distance transform
algorithm [165, 163] or by using the Laplace equation [167, 169, 171]. Finally,
the circumferential direction ¢ follows as ¢ =1 X r.

In the last decade, a subgroup of RBMs, namely Laplace-Dirichlet-Rule-Based-
Methods (LDRBMs), has been developed (e.g., by [167, 168, 169, 171]), which
provide a smoothly varying local material coordinate system, even for complex
geometries, see also Fig. 1.3 (a). Laplace’s equation is utilised to directly com-
pute the transmural depth d [167, 169, 171] or to interpolate vector coordinates
of f, n or s [168]. However, for complex geometries, Laplace’s equation neither
accurately determines the transmural depth d, nor ensures a geometrically
appropriate interpolation of vector coordinates.

The development of a new robust, efficient and accurate LDRBMs motivates
the first objective of this thesis, see objective I.I.A.-D. in Section 1.4. The
LDRBM is based on a computational model to accurately assess the trans-
mural depth d on unstructured 3D finite element meshes (objective I.I.A.).
The transmural depth model is founded on a novel computational framework
to accurately determine the arc length of the transmural path (i.e., the wall
thickness of the myocardium) (objective I.I.B.). The proposed framework can
be used to efficiently and accurately determine the wall thickness for arbitrary
3D geometries of ventricles, atria, vessels, which can be beneficial for clinicians,
as wall thickness serves as a crucial risk indicator for a variety of cardiac
diseases. Further, the proposed LDRBM includes novel regional transmural
fibre/sheet angle rules for the left ventricle based on DT-MRI data (objective
LI.C.). Finally, the developed LDRBM is compared with established LDRBMs
(objective 1.I1.D.). Objective I.I.A.-D. is mainly covered by Chapter 3 in this
thesis.

Besides a methodological comparison of different LDRBMSs (objective LI. D.),
there is, so far, a lack of comparison among these methods in the context
of electromechanical simulation. Only in [171], three different LDRBMs are
compared based on a biventricular electromechanical model. To further explore




1 Introduction

60 — n=0.25
—— n=0.5
n=1.0
TSMs ~ a0l oo
g —— n=3.0
K n=>5.0
RBMs 5 ol -
<
8
2 30| .
LDRBMs
—60 -

| |
0 02 04 06 08 1
normalised transmural depth d

(a) groups of tissue structure mod- (b) fibre function a.
els (TSMs).

T ?
A -IN

(c) local tissue structure.

Figure 1.3: (a) rule-based methods (RBMs) and Laplace-Dirichlet-Rule-Based-
Method (LDRBM) as subgroups of tissue structure models (T'SMs)
for cardiac simulation. (b) transmural fibre angle based on rule
given in e.g. [166]. (c) The cardiac tissue structure with a distinct
fibre direction f, sheet normal direction n and sheet direction s.
The fibre angle o and sheet angle § vary along the transmural
path. The fibre and sheet angles are defined with respect to a local
orthonormal reference coordinate system ¢, l, r.
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the extent, to which LDRBM-based orthotropic tissue structures influence the
electromechanical characteristics of the cardiac model, motivates objective L.II.
In detail, this study investigates the influence of different LDRBMs on impor-
tant characteristics of cardiac function, based on an electromechanical model
of the cardiac tissue. The electromechanical model is equipped with three
different LDRBMs ([167], [168] and the developed LDRBM in this work). The
quantitative comparison is based on the distinct characteristic orthotropic
tissue structure of the three LDRBMs, global (ejection fraction, peak pressure,
apex shortening, myocardial volume reduction, and pressure-volume loops) and
local (active fibre stress, fibre strain) characteristics. Objective L.II. is mainly
covered by Chapter 4 and 5 in this thesis. It is worth noting that Chapter 3,
4 and 5 are to a great extent based on [170, 180].

1.3 Computational models — DEA artificial muscles in cardiac
application

If conservative therapies are insufficient to treat the pathology of the heart,
dysfunctions that can be caused by a variety of diseases (e.g., myocardial
infarction (MI), congenital heart failure or cardiomyopathy), there are usually
only two options to counter such a life-threatening condition — specifically
the use of a CaAD or heart transplantation. However, there is a systemi-
cally chronic shortage of donors. In Germany, only 329 patients received a
donor heart in 2021 although 727 patients were waiting on the transplant
list'. While heart transplantation is still superior in terms of survival and
functional capacity, significant improvements in the field of CaADs present a
promising solution by which to close the gap between availability and demand
for donor hearts [181, 182]. Over the last decades, various types of mechanical
pumping systems (ventricular assist devices (VADs)) have been developed
[183]. These are used as an invasive form of therapy to directly support blood
circulation. In principle, these systems mostly work as a bypass in cases of
cardiac insufficiency. The usage of such VADs can relieve the load on the
heart and allows a short to medium-term alleviation of cardiac insufficiency
until transplantation (bridge-to-transplantation) and may even be used as a
permanent solution (destination therapy) [184].

Despite the fact that the development of new devices is rapid and post-surgery
survival and functional capacity now approaches that of heart transplantation,
there are still many complications to solve including bleeding, coagulation
(anti-coagulants are used to avoid blood clots and thus strokes), infection (espe-
cially caused by the driveline connecting the control unit with the pump) and
electrolyte disorders [185, 186, 187, 188]. However, wireless energy transfer
technology in conjunction with rapidly evolving battery technologies can reduce

Thttps://www.organspende-info.de
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the risk of infections (as they employ no driveline) [189, 190, 191]. Additionally,
the existing devices are already developed further by miniaturisation to place
the whole system inside the thorax. By addressing the aforementioned issues,
future CaADs may outperform heart transplantations and thereby solve the
systemically-related chronic shortage of donors. As previously mentioned, one
promising approach which has gained increasing attention, especially over the
past decade, is the use of artificial muscles based on DEAs which serve as
cardiac assist devices (CaADs).

The modelling of dielectric elastomer actuators has a long history. Initial
theoretical discussions on various electromechanically coupled field theories
are to be found in [192, 193, 194, 195, 196]. More recently, [197, 198, 199, 200]
dealt with coupling effects concerning magnetoelasticity and electroelasticity.
First, finite element implementations can be found in [201, 202, 203, 204].
As dielectric materials exhibit viscoelastic characteristics, [205, 206, 207, 208|
introduced viscoelastic terms to account for the dynamic behaviour of dielectric
elastomers. In [209], the electromechanical finite element model from [204]
is extended by inertia terms and a variational time integration scheme is de-
rived in the Lagrangian setting. The stretch-dependent permittivity of acrylic
dielectric elastomers and the associated consequences for a reduced lumped
parameter model are discussed in [210], and in [211] optimal control problems
for dielectric elastomer actuated multibody systems are solved based on a
reduced lumped parameter model for stacked actuators. The incompressibility
of dielectric elastomers and associated numerical difficulties are discussed in
[212, 213, 214]. The mentioned FEM serve as a highly effective toolset for
solving problems that involve electromechanical coupling phenomena, however,
the numerical solving is computationally costly [211].

To support the heart during the course of the cardiac cycle in real-time, the
active control of the CaAD based on DEAs occurs on a short timescale, neces-
sitating the use of computationally efficient methods (e.g., lumped parameter
models [210, 211]). Today, a very limited number of artificial muscle models
based on DEAs for cardiac application exist. In [14, 215], an analytical model
of a tubular DEA has been proposed for the ascending and descending aorta.
In [216, 184], the cardiac function of a diseased heart suffering from restrictive
cardiomyopathy was investigated by imitating the diseased tissue through a
reduced contraction/stiffer tissue response and supporting the heart via epi-
cardial pressure during diastole and systole. However, the pressure-generating
system has not yet been modelled.

In Fig. 1.4, potential applications of DEA-based CaADs are depicted. The
general idea is based on thin and curved structures (e.g., to augment the ven-
tricular or aortic functions). From a mechanical point of view, this motivates
to model DEA-based CaADs as structural elements such as shells, which are
well suited since they capture complex geometries for patient-specific device
design, save computational time as compared to 3D FEM, allow for simpli-
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(a) ventricular support. (b) aortic support.

Figure 1.4: (a) DEA-based CaAD — ventricles. (b) DEA-based CaAD — aorta.

fied meshing algorithms compared to volume meshes, are easy to integrate
into multibody systems and optimal control problems, and are less prone to
negative Jacobian errors.

Various types of shell formulations exist, including kinematics (Mindlin-Reissner,
Kirchhoff-Love), fields (mechanical, electrical, electromechanical), variational
principles (virtual work, Hellinger-Reissner, Hu-Washizu), and static and
dynamic formulations. In [217], a solid shell finite element formulation for
dielectric elastomers is proposed. A review on Cosserat-type theories for plates
and shells is given in [218]. In [219], thermodynamic effects in Cosserat shells
are discussed. The incorporation of a geometrically exact shell model into
multibody dynamics is described (][220, 221]. A promising approach for a
structural element formulation of dielectric materials can be found in [222],
where a dynamic, viscoelastic, electromechanically coupled beam model is
developed including variational time integration and null space projection.
Additionally, in [223], the beam model is used in optimal control simulation of
dielectric elastomer actuated multibody systems.

However, to the best of our knowledge, a dynamic, viscoelastic, electromechan-
ically coupled shell formulation based on a variational time integration scheme
has yet to be developed. Therefore, the development of a dynamic, viscoelastic,
electromechanically coupled shell formulation based on a variational time inte-
gration scheme motivates the second part of this thesis (objective II.I.A.-D.).
Further, to demonstrate the potential of the model, numerical examples
including different geometries as well as deformation states are presented
(objective ILIL.).
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1 Introduction

1.4 Objectives and outline of this work

This section provides an overview of the defined objectives of this thesis. More
details about the definition of the objectives can be found in the previous
Sections 1.2 and 1.3. Note that objectives I.I. and L.II. are, to a great extent,
based on [170, 180]. In [170, 180], the doctoral candidate contributed by
conceptualisation, methodology, software, formal analysis, writing - original
draft, and visualisation of the studies.

Cardiac muscle model

I.I. Development of a robust, efficient and accurate Laplace-Dirichlet-Rule-
Based-Method (LDRBM) — [170].

A. Computational model to accurately assess the transmural depth on
unstructured 3D finite element meshes.

B. Integration of wall thickness assessment.

C. Development of regional transmural fibre and sheet angle rules for
the left ventricle based on DT-MRI measurements.

D. Comparison of the proposed method with established LDRBMs.
III. Electromechanical model of the cardiac tissue and study about the

influence of orthotropic tissue orientation on overall cardiac function
based on defined cardiac characteristics — [180].

Artificial muscle model

IL.I. Development of a shell model for dielectric elastomer actuators (DEAs)
as CaAD including:

. dynamics;

. viscoelasticity;

Q w =

. electromechanical coupling; and,

D. structure-preserving time integration.

II.II. Implementation and numerical examples of the derived shell formulation.

This thesis is structured as follows: In Chapter 2, a short introduction into
continuum mechanics and the finite element method is given. The novel
LDRBM is presented in Chapter 3, see (I.I.A.-D.). In Chapter 4 and 5, the
electromechanical model of the cardiac tissue is introduced and the influence
of the orthotropic tissue on cardiac function is studied, see (L.IL.). In Chapters
6 and 7, the shell formulation is derived (II.I.), implemented and numerical
examples are presented (IL.IL.). The work concludes with Chapter 8, which
discusses the findings, relevance, and future prospects for this work.
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2 Background — cardiac muscle model

In the following chapter, the basic concepts of continuum mechanics as well as
the continuous and discontinuous Galerkin FEM are briefly introduced. These
concepts are important in the subsequent Chapters 3, 4 and 5. Since this
Chapter presents a concise overview, please refer to the standard literature
for a detailed description of continuum mechanics [224, 225, 226] and FEM
[227, 228, 229, 230, 231, 232, 233, 234, 235].

In Section 2.1, the fundamental equations and relevant quantities of continuum
mechanics are introduced. Additionally, in Section 2.2, a brief discussion of the
basic concept of FEM is provided and the difference between the continuous
and discontinuous Galerkin FEM is highlighted.

2.1 Continuum mechanics and electromechanics

The basic assumption in continuum mechanics is that materials can be described
as a continuous mass. Therefore, the concept neglects the fact that every
matter consists of atoms (discrete particles) and is obviously not continuous.
However, on a significantly larger scale than the atomistic level, continuum
mechanics is able to accurately describe the mechanical behaviour of matter.
The basic equations in continuum mechanics can be subdivided into the
kinematic description (Section 2.1.1), balance equations (Section 2.1.2) and
constitutive laws (Section 2.1.3).

2.1.1 Kinematics

The kinematics in continuum mechanics geometrically describes the motion
and deformation of a body by taking into account the time, space, velocity
and acceleration without considering the cause of the motion (i.e., forces, mass,
etc). In the following, the important quantities, namely the deformation map
and deformation gradient are introduced, followed by the definition of some
fundamental strain measures.

Deformation map Figure 2.1 represents the basic finite deformation map
between the initial configuration (also known as material or undeformed
configuration) and current configuration (also known as spatial or deformed
configuration). The deformation map describes the relation between the initial
configuration By and the current configuration B;. At the initial time to, the
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2 Background — cardiac muscle model

p(X,1)

T

By

S~

w(X,t)

Figure 2.1: Deformation maps (X, t) and = (x, t) between initial and current
configuration.

position of a considered material point in the undeformed configuration By is
described by the position vector X € R3. At the current time ¢, the position of
the material point in the deformed configuration B; is described by the position
vector & € R®. To map the material point from the undeformed configuration
Bo to the deformed configuration B:, a nonlinear deformation map (X, t) is
defined. The Lagrangian description of the motion reads

x=@(X,t) with ¢:Bo— B, (2.1)

where Bo, B; C R3. Similarly, the inverse nonlinear deformation map = from
the deformed to the undeformed configuration, called the Eulerian description
of motion, is defined as

X =w(x,t) with w: By — Bo. (2.2)

Based on the Lagrangian description, the displacement field u is determined
by the difference between the current position vector « and the initial position
vector X

u(X,t) =p(X,t)— X. (2.3)

Deformation gradient The deformation gradient F(X,t), which characterises
the local deformation at a material point X, is given as

F(X,t) = Vxp(X,1) (2.4)
=I+Vxu(X,t) with F:TBy— TB, (2.5)
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2.1 Continuum mechanics and electromechanics

where TBo, TB; are the initial and current tangent spaces, respectively. With
the deformation gradient F (X, ¢), the Jacobian J = det(F) > 0, the initial and
current outward unit surface normals N € R® and n € R® on the boundaries
0By and 0B; and the Nanson’s formula at hand, the transformation of an
arbitrary line element dX, area element dA and volume element dV from the
initial configuration By to the current configuration B; can be written as

(line element) de =F -dX, (2.6)
(area element, Nanson's formula) dan=JdAF " N, (2.7)
(volume element) dv=JdV, (2.8)

see also Fig. 2.1.

Strain measures In case of large deformation (nonlinear theory), deformation
measures such as the Green-Lagrange strain E are defined. The Green-Lagrange
strain reads

E= [FT-F—I]:%[C—I], (2.9)

N —

where the right Cauchy-Green tensor C = FT . F and I is the unit tensor. A
multiplicative decomposition of the deformation gradient into a volumetric (e)°
and isochoric (e)® part is introduced for incompressible or nearly incompressible
materials

F=F° F°, (2.10)
with F° = J/I, F® = J '*F and C°® = F°T . F°.
Time derivatives In order to describe dynamic effects (e.g. viscous material

behaviour), velocities and accelerations have to be taken into account. The
velocity and acceleration of a material point X are defined as

o d
L d¢
&= @(X,t) = (Tf' (2.12)

The time derivative of the deformation gradient F is given as

F(X,t) = Vxp(X, t). (2.13)
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2 Background — cardiac muscle model

2.1.2 Balance equations

The fundamental balance equation states that for an arbitrary domain By, the
temporal change of a balance quantity (A)o in Bp is equal to the sum of all
source terms (®)o in By and flux terms (M)o - N on the boundary dBy. In the
reference configuration, the fundamental balance equation can be written as

/ (Ao dV = (®)o dV—|—/ (W) - N dA. (2.14)
Bo Bo 9Bg

By applying the divergence theorem and assuming that Eq. (2.14) has to hold
for any arbitrary region By, the local form is defined as

(A), — (®)o— Vx - (W)o) =0 VX € Bo. (2.15)

Based on Eq. (2.14), the mechanical balance equations (conservation of mass,
balance of linear momentum, balance of angular momentum) and electrical
balance equation are briefly discussed in the following.

Conservation of mass In this work, the total mass m in the system is conserved.
Thus, the source and flux terms in Eq. (2.14) vanish and the local balance of
mass reads

po=0 VX € By, (2.16)

where po is the material density in the domain.

Balance of linear momentum The balance of linear momentum in material
form reads
Vx  -P+ Bo=pox VX € By, (2.17)

where P € R3*3 is the first Piola-Kirchhoff stress tensor and By is the body
force vector. The first Piola-Kirchhofl stress tensor P is defined such that
the traction vector T'(X,t,N) = P(X,t) - N. The first Piola-Kirchhoff
stress tensor P is related to the well-known stress measure in the current
configuration o (Cauchy stress tensor) by the transformation P = J o - F~7.
Another important stress measure is the second Piola-Kirchhoff stress tensor
S=JF !¢ FT=F'P

Balance of angular momentum The local balance of angular momentum yields
F-P"=P.F' VX eB,, (2.18)

which implies that the spatial Cauchy stress tensor & = J 1P -F7 is symmetric,
while the first Piola-Kirchhoff stress tensor P is not in general (Cauchy’s stress
theorem). It is worth noting that the second Piola-Kirchhoff stress tensor S is
symmetric.
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2.1 Continuum mechanics and electromechanics

Electrical balance equation The electrical field is described by the spatiotem-
poral evolution of the transmembrane potential ¢ and reads

Vx -Q+F?=d¢ VX € B, (2.19)

where & denotes the material time derivative of the transmembrane potential,
Q is the electrical flux and F'? is the nonlinear current source term. The
electrical flux @ is defined as Q@ = D - V@, where the anisotropic conductivity
tensor is given as D = d;sol + dani fo ® fo, with fo being the fibre orientation
in the reference configuration.

2.1.3 Constitutive laws

In the following, the constitutive equations for the active mechanics, as well as
the electrophysiology and mechano-electrical feedback (MEF), are introduced.
A more detailed description can be found in the corresponding Chapter 4.

Active and passive mechanics In the material configuration, the second Piola-

Kirchhoff stress tensor S is additively decomposed into a passive part SP*° and
an active part S**, see e.g. [121],
S = SPas 4 gact, (2.20)

In this work, a hyperelastic material model is used to capture the mechanical
behaviour of the cardiac muscle tissue. The strain energy density function
¥ is subdivided into a passive and an active part, namely Wyas and Wact,
respectively. The passive and active part of the second Piola-Kirchhoff stress
tensor S are defined as the derivative of the strain energy density function
w.r.t. the right Cauchy-Green tensor C

a‘llpas Sact — 28\1/301:

pas _
ST =2 oC ’ oC

(2.21)

Electrophysiology and mechano-electrical feedback (MEF) The term F? in
Eq. (2.19) is additively decomposed into an electrically induced source term
F.? and a mechanically induced source term F,Z. The source term F,Z accounts
for the electric potential generation due to mechanical deformation (MEF).
Consequently, the nonlinear source term F'? reads

F?=F+ . (2.22)

In general, the electromechanical problem consisting of the balance of linear
momentum in Eq. (2.17), the electrical balance equation in Eq. (2.19), con-
stitutive laws in Eq. (2.20)—(2.22) cannot be solved analytically and require
spatial and temporal discretisation. In this work, the FEM is utilised for the
spatial discretisation and its basic concept will be introduced in the following.
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2 Background — cardiac muscle model

2.2 Finite element method

For the spatial finite element discretisation of the electromechanical problem,
the strong forms in Eq. (2.17) and Eq. (2.19) have to be transformed into an
integral form (weak form).

Weak formulation The integral form is obtained by multiplying the considered
strong forms in Eq. (2.17) and Eq. (2.19) with a test function, integrating
over the computational domain, integration by parts, applying the divergence
theorem, satisfying the essential boundary conditions (§¢ = 0 on 9,Bo, §& =0
on J¢Bp) and applying the Neumann boundary conditions (T =P-N=T
on drBy, Q =Q-N =Q on 0oBo). The corresponding weak forms for the
mechanical and electrical field are given as

/5cp~po¢dv+/vx(6<p):PdV—/Jgo-BodV— /&p-TdA:O,
Bo Bo Bo a1 Bo
(2.23)

/5q§q‘5 dV+/Vx(5¢)»QdV—/§q5F¢ av — / §0Q dA =0,
Bo Bo Bo 9q Bo
(2.24)
where d¢ and § @ represent the vector- and scalar-valued test functions for the

mechanical and electrical weak forms, respectively. Subsequently, the nonlinear
weak forms in Eq. (2.23) and Eq. (2.24) need to be linearised and discretised.

Linearisation Rewriting Eq. (2.23) and Eq. (2.24) in terms of residuals

=0, (2.25)

r? =0, (2.26)

the linearisation of Eq. (2.25) is given by the derivative with respect to ¢ and ¢
®

Ar¥? = %‘;’@) N =K% Ao, (2.27)
@

Are? = W-A@:KW-A@. (2.28)

The linearisation of Eq. (2.26) follows analogously and reads

P 8T¢((p7 @) .

Arf = = Do =K Lo, (2:29)
P
Arw:W'A@:K@@'A@' (2.30)
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2.2 Finite element method

Spatial and temporal discretisation The continuous weak forms in Eq. (2.25)
and Eq. (2.26) are approximated by the conventional isoparametric Galerkin
concept. The spatial discretisation of the initial domain By leads to the
discretised domain BS (Bo ~ Bh = Ul 1"3’6”76)7 where the assembly operator A
is introduced to assemble all elements in the domain

/(...) AV ~ /(...) v = néll () dv. (2.31)
Bh

B, h
0 0 By e

The total number of discretised elements in the domain is denoted by ne;.
For further details regarding the discretisation, please refer to Section 4.6.
In the following work, we neglect the dynamic term in the balance of linear
momentum. Thus, only the evolution of the transmembrane potential é
needs to be discretised in time. The implicit Euler integration scheme is
used for Eq. (2.19) with the time derivative of the transmembrane potential
approximated as finite difference

c (X tag) — P(X, 1)
b~ N , (2.32)

where At = t,,41 —t, and tp41, ¢, represent the current and previous time step,
respectively. Finally, with the discretised linearised weak form, the globally
assembled system of equations reads

{EZZ EZ;J ' {ig} = [::q : (2.33)

This system of equations can be solved via e.g. the Newton-Raphson method.
An incremental update of the Newton-Raphson method for an arbitrary time
step n + 1 in the k-th iteration is defined as

r}f,n+1 + Kf<p,n+l . A‘P 4 Kf¢s”+l AP = 07 (234)
’I']f’n+1 + K}fgo,n-‘—l . A‘P + K}f@,n+1 AP = 0. (235)

The incremental update of the solution variables for the mechanical and elec-

trical field are defined as cpZill = t,oZH + Ag and QSZI% = @Z“ +A®. After

@,n+1 D,n+1

computing the residua 731" and 7, 7|, the next time step will take place

for |7 | < tol and ‘r,f_;_’i“‘ < tol or the next iteration for |1°,f_’~_"1+1| > tol

and ’r,fjﬁ“’ > tol, where tol is a predefined tolerance value.
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2 Background — cardiac muscle model

2.2.1 Continuous Galerkin approximation

Within the continuous Galerkin approximation (classical FEM), a test function

space V,C9 is defined as
Vi@ = {wn € H' (Bo) : wilsy € Pr(Bse) VBi. € Bil, (2.36)

where wy, is the test function, H! is a Sobolev space, and Py is the space
of polynomials of degree k. The solution (e.g. the displacement u in case of
the balance of linear momentum) is sought in the same finite dimensional
subspace V,.C9F (otherwise Petrov-Galerkin). The solution in the domain is
continuous (C).

2.2.2 Discontinuous Galerkin approximation

In contrast, for the discontinuous Galerkin approximation, only L2 regularity

of the solution is required (the solution must be sought in the space of square-

integrable functions) and no continuity over element boundaries is enforced.

Due to the missing intra-element continuity, the discontinuous Galerkin ap-

proximation leads to a different derivation of the weak form. The test function
DG,k -

space V), is defined as

VOO = {wp € L2(Bo) : wnlg €Pr(By.) VBi.€Bg},  (237)

where wy, is the test function, Lo is the space of square-integrable functions,
and P is the space of polynomials of degree k.
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3 Orthotropic tissue structure model

In this chapter, we present a novel Laplace-Dirichlet-Rule-Based-Method
(LDRBM) to compute the orthotropic tissue structure on unstructured finite
element grids. Instead of directly using the solution of the classical Laplace
problem as the transmural depth, see e.g. [167, 169, 171], we make use of a well-
established model for the assessment of the transmural thickness/depth [236,
237]. The model consists of two first-order partial differential equations (PDEs)
for the definition of a transmural path, whereby the transmural thickness is
defined as the arc length of this path. Subsequently, the transmural depth
is determined based on the position on the transmural path. Originally,
the PDEs were solved via finite differences on structured grids. In order to
circumvent the need for two grids and mapping between the structured (to
determine the transmural depth) and unstructured (electromechanical heart
simulation) grid, we solve the equations directly on the same unstructured
tetrahedral mesh. We propose a discontinuous Galerkin method-based (DGM)
approach. DGMs are an important class of methods for solving differential
equations and are utilised in a wide field of application including chemical
transport [238], viscoelasticity [239, 240], elasticity [241, 242], elliptic problems
[243, 244], hyperbolic problems [245, 246], parabolic problems [247, 248, gas
dynamics [249, 250], see also [251]. The basic concept of the DGMs was
first introduced in 1973 by Reed and Hill [233] for solving the steady-state
first-order neutron transport equation. DGMs are especially attractive e.g.
for advection/convection-dominated problems as they are more stable when
compared to the classical continuous Galerkin FEM. Moreover, DGMs are
readily usable for parallel computing, well suited for higher-order accurate
models and advantageous due to a simplified assembly of the stiffness matrix
and mesh refinement. Based on the accurate transmural depth, we assign
the local material orientation of the orthotropic tissue structure in the usual
fashion. We show that this approach leads to a more accurate definition of
the transmural depth compared to existing LDRBMs. We compare the results
for different LDRBMs based on a simplified geometry of a hollow cylinder.
Furthermore, for the left ventricle (LV), we propose rules for the transmural
fibre and sheet orientation and fit them to DT-MRI literature data. The
proposed functions provide a distinct improvement compared to existing rules
from the literature and can be readily integrated into established methods e.g.
[167, 169]. Note that this chapter is to a great extent based on [170].
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3 Orthotropic tissue structure model

3.1 Comparison of Laplace-Dirichlet-Rule-Based-Methods

In the following, the well-established reference LDRBMs — B-RBM ([167]) and
W-RBM ([168]) — are introduced as they serve as a benchmark for the novel
H-RBM method. The H-RBM method will be introduced in detail in the
subsequent Section 3.2. In Tab. 3.1, a brief overview of the basic workflow for
the methods B-RBM, W-RBM and H-RBM is given.

Table 3.1: Basic workflow for methods B-RBM, H-RBM, W-RBM.

B-RBM

W-RBM

H-RBM

e geometry & mesh

&

e geometry & mesh

&

e geometry & mesh

> (’
B

e trans. rule

aw(d(z)) in Eq. (3.12)
Bw(d(x)) in Eq. (3.13)

® f/son 0By,en/0Bo,ep

e trans. rule

a(d(z)) in Eq. (3.47)
B(d(x)) in Eq. (3.48)

e Laplace (2x)
Ad(z) =0 in Eq. (3.1)
b.c. Eq. (3.2)/(3.3)

e Laplace (6x)
Ad(z) =0 in Eq. (3.1)
b.c. Eq. (3.20)/(3.21)

@Gﬁ
voe

e Laplace (2x)
Ad(x )—OinEq (31)
b.c. Eq. (

e find trans. path
Lo, in Eq. (3.23)/(3.24)
b.c. Eq. (3.25)/(3.26)

e Eq. (3.4)-(3.14)

e via Laplace (6x)

e Eq. (3.43)-(3.48)
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3.1 Comparison of Laplace-Dirichlet-Rule-Based-Methods

B-RBM

The approach by [167] is based on the definition of a transmural depth d(z) in
the computational domain By. The transmural depth is obtained by solving
the Laplace equation

Ad(X)=0 inBy VX € Bo, (3.1)

where A denotes the Laplacian, d(X) represents the transmural depth of the
ventricular wall with d : By — [0,1], © € By and By is a bounded domain in
R3. The Dirichlet boundary conditions for the Laplace problem are given as

d(X) =0 on aBO,e'rL vX S aBo,em (32)
d(X) =1 on 880,61) vX € 880,en>

where 0Bg,en and 0Bp,ep represent the endocardial and epicardial surfaces,
respectively. Furthermore, a locally defined orthonormal reference coordinate
system Crer(X) = [e(X),1(X),r(X)] consisting of a local circumferential,
longitudinal and radial direction is defined as

l(z) = Tau(x), (3.4)
Ty (z) — (Uz) - Ty (x))U(=)

) T (x) — (I(z) - T (x))l(z)|’ (3.5)

c(z) =l(x) x r(x), (3.6)

with the normalised transmural direction Ty (X) defined as

Vd(X)

X = wa

(3.7)

and T,(X) being the normalised apicobasal direction. The local normalised
apicobasal direction T, (X)) is defined by solving a second Laplace problem
(analogous to Eq. 3.1) to determine the local longitudinal axis of the LV

Aa(X) =0 in By VX € Bo, (38)
see also [167]. We define Dirichlet boundary conditions

CL(X) =0 on 880,(1;7 VX ¢ 880,(1,;, (39)
1 on 0Bosa VX € 0Bopa, (3.10)

where 0Bo,qp represents a small apical, epicardial subregion and 0Bg 4 is the
basal plane. We obtain the normalised gradient vector field T, (X)) by

Va(X)

T(X) = W@

(3.11)
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3 Orthotropic tissue structure model

The procedure to construct the local orthonormal reference coordinate system
Cres(X) is based on the assumption that the longitudinal direction I(X)
and T,(X) coincide, see Eq. (3.4). In case that T,(X) and T;(X) are not
orthogonal, Eq. (3.5) assigns that part of T4 (X) to the transmural direction
r(X) which is orthogonal to T, (X). In the special case that T, (X) and Ty (X)
are orthogonal, 7(X) is simply T%(X). Additionally, based on the transmural
depth d(X), the local fibre angle a,,(d(X)) and sheet angle §,,(d(X)) are
defined as (notation from [167])

aw(d(X)) = dendo - (1 — d(X)) + aepi - d(X), (3.12)
Bu(d(X)) = Bendo - (1 = d(X)) + Bepi - d(X), (3.13)

where Qendo, Qepis Bendo, Bepi represent the given fibre and sheet angles on
the endocardium and epicardium, respectively. With the known local fibre
angle o, (d(X)) and sheet angle 8., (d(X)), a local material coordinate system
Cmat(X)= [f(X),n(X), s(X)], representing the local myofibre orientation
(fibre direction f, sheet normal direction n, sheet direction s) is obtained by

1 0 0 cos(aw) —sin(aw) 0
Cmat =10 cos(Bw) sin(Buw) sin(aw)  cos(ow) 0] Crey. (3.14)
0 —sin(Bw) cos(Bw) 0 0 1

The charm of the method lies in the straightforward implementation, robust
computation, smoothly varying material orientation throughout the domain
and the arbitrarily selectable functions for the fibre angle a.,(d(X)) as well as
the sheet angle 8., (d(X)). However, it is trivial to see that the definition of the
local material coordinate system Crq:(X) depends on the solution d(X) of the
Laplace problem. In Fig. 3.1, we consider a cylindrical geometry (representing
a short axis ventricular slice) with an inner-to-outer radius ratio a, = 0.62.
The reference solution in Fig. 3.1 (a) shows the desired linear change of the
normalised transmural depth d along the path Ayp—Bi, where Cy 5 lies exactly
in the middle of the ventricular slice. In contrast, the Laplace solution in
Fig. 3.1 (b) from Eq. (3.1) shows a nonlinear change of d along the same
path Ao—Bi. This can be also seen in Fig. 3.2, where one can compare the
linear change (blue curve) with the yellow curve obtained by Eq. (3.1) with
ar = 0.62. E.g. at an ordinate value of d¢rue = 0.5 of the blue curve (linear),
the horizontal distance to the yellow curve shows the deviation of the centre
point Co 5 in Fig. 3.1 (b). The point Cy 5 of the yellow curve is shifted by 0.06
(0.44 instead of 0.5) to the endocardial point Ag. Consequently, this imprecise
transmural depth d(X) leads to a nonlinear transmural fibre and sheet angle
distribution in Eq. (3.12) and (3.13). This can be also seen in Fig. 3.4 (c, ®),
where the maximum deviation of the fibre angle « from the desired linear rule
is up to 7° for the method in [167].

26



3.1 Comparison of Laplace-Dirichlet-Rule-Based-Methods

(a) Linear change - reference. (b) Laplace approach — d(X).

Figure 3.1: (a) linear change of diry. along the green line (Co.s centred).
(b) nonlinear change of d(X) in Eq. (3.1) (Co.5 shifted towards Ao).
The colourmap is in the range of 0 (blue ®) to 1 (red ®). Reprinted
with permission from [170]. Copyright © 2022 by ASME.

l I I
—— linear
08 ar = 0.54 N
a, = 0.62
ar = 0.76
. 0.6} ar = 0.89 .
o)
= 04l -
0.2 N
0 | | |

\ \ \ \ \
0 01 02 03 04 05 06 07 08 09 1
true transmural depth dirye

Figure 3.2: The transmural depth d(X) based on Eq. (3.1) is plotted over the
true transmural depth diry. for different values of a,. The true
transmural depth di,ye is defined as the normalised radial distance
(inner to outer radius) for the cylindrical geometry from Fig. 3.1.
The transmural depth d(X) from Eq. (3.1) only coincides with
the assumed true transmural depth dirye if the ratio a, is close
to 1, which is not the case in the human heart. Reprinted with
permission from [170]. Copyright (© 2022 ASME.
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3 Orthotropic tissue structure model

W-RBM

In [168], no rules based on the transmural depth d are defined, but on the
diffusion coefficients in the Poisson problem itself. A special case of the Poisson
equation — the homogeneous Laplacian — is utilised by choosing isotropic
constant diffusion coefficients. The local myofibre orientation is initially defined
on the endocardium and epicardium. The definition of the local myofibre
orientation is based on a globally constant longitudinal axis of the heart
z = p1 — p2, where p1 and p2 represent an apex and basal point, respectively.
Subsequently, the circumferential direction c is calculated by the following
cross product

c =4[z x nj, (3.15)

where n is the normal vector of a particular node on the endocardium and
epicardium obtained by averaging the connected facet normals and

6—{+1 on 0Bg,ep

3.16
—1 on 0Bo,en ( )

Based on the definitions of z, n and ¢, the fibre and sheet direction f and s
are computed by

s = sign(ne. - n)n, 3.17)

f=[-p-s|nc + [nc. - slp, (3.18)

where n.. = ¢ X z, p = proj(f) = cos(a)c + sin(a))z and

o= {aendo on aBO,en (319)

)
Qepi O 830,3;0

where aendo and aep; define the fibre angle on the endocardial and epicardial
surface, respectively. Finally, the vector coordinates in fibre and sheet direction
f =1h, f2, f3], s = [s1, 2, s3] are interpolated via the Laplace equation. In
detail, each vector coordinate of f and s is interpreted as a scalar-valued
feature on the boundaries 0Bg,en and 0Bo,p and six Laplace equations are
solved independently with the following Dirichlet boundary conditions

dx) =ul on  9Byen, (3.20)
d) =ul on 8Bo.cp, (3.21)

7

where i = [f, s] and j = [1, 2, 3], see also Fig 3.3. This method is widely estab-
lished due to its straightforward implementation, smooth material orientation
throughout the domain, robust and efficient computation and applicability
to sparse and non-uniform data. On the contrary, it is ambitious to define
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¥,

) coordinate fi. (b) coordinate fo. ) coordinate f3.

) coordinate si. (e) coordinate ss. ) coordinate ss.

Figure 3.3: Solution of the Laplace equation for the method W-RBM with
the boundary conditions defined in Eq. (3.20) and Eq. (3.21).
(a)-(c) solution for the fibre vector coordinates fi, f» and fs.
(d)-(e) solution for the sheet vector coordinates si, s2 and ss.

an arbitrary rule for the transmural fibre and sheet angle as it requires the
element-wise variation of the diffusion tensor. Further, the method does not
necessarily enforce the desired interpolation (e.g. linear) through the thickness,
see Fig. 3.4. It is important to remark that a linear change of the vector
coordinates does not necessarily lead to a linear change in angle. Thus, for
the previously described geometry of the hollow cylinder with a, = 0.62 in
Fig. 3.1, the deviation from the desired linear change of the fibre angle o shows
a maximum of 17°, see Fig. 3.4 (¢). The larger deviation compared to B-RBM
(7°) can be justified with the accumulation of a) the geometrical inaccuracy
of a linear interpolation of vector coordinates in [168] and b) the inaccuracy
based on the Laplace problem itself due to the dependence on a,, see Fig. 3.4.
The inaccuracy caused by b) motivates this work. A remedy for a) concerning
W-RBM would require the element-wise variation of the diffusion tensor (no
longer a Laplace problem.). However, the main focus in this work is on a
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Figure 3.4: The plot shows the different results for the transmural fibre angle «
in (°) over the normalised true transmural depth d¢rve based on the
methods in [167, 168]. The desired linear change in fibre angle can
be achieved by utilisation of the proposed discontinuous Galerkin
approach. Reprinted with permission from [170]. Copyright (©)
2022 ASME.

remedy for b) concerning B-RBM and thus on the accurate representation of
the transmural depth d that is independent of a,, since it is a reasonable model
assumption (otherwise, the rules in Eq. (3.12) and Eq. (3.13) would depend
on a, and thus become geometry-dependent rules). In the current form, the
solution of Eq. (3.1)-(3.3) only leads to an accurate transmural depth as long
as the ratio a, is close to 1. This is illustrated in Fig. 3.4, where we compute
the solution for Eq. (3.1) with boundary conditions specified by Eq. (3.2)
and Eq. (3.3) for different values of a, € {0.54,0.62,0.76,0.89}. The true
transmural depth di,.e in such a concentric geometry is simply based on the
radial coordinate in a cylindrical coordinate system. We are plotting d(X) from
Eq. (3.1) over the normalised true transmural depth diyye. With an increasing
value of a,, the deviation of d(X) compared to the true transmural depth dirue
increases. Thus, for a realistic value of a, in a heart or ventricular geometry
(ar # 1), the use of d(X) leads to a — preventable — geometry-dependent
inaccuracy.

It is worth noting that the naming of the variables for the sheet and sheet
normal direction is not consistent in literature, e.g. in [87] the directions are
termed (s,n), while [167] and [168] use (T,S) and (s,m), respectively. There
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should be an unambiguous convention in the future to minimise the potential
for misinterpretation or confusion.

In summary, the challenge of a precise assessment of the transmural depth
in a finite element setting motivates this work. The main purpose is the
development of a finite element-based approach to accurately determine the
transmural depth. We propose a DGM-based approach for the computation of
the wall thickness defined in [236, 237], which is originally approximated via
finite differences on a structured grid. It is shown that the method results in
an accurate assessment of the transmural depth, which improves and facilitates
(no mapping between structured and unstructured grid) the assignment of
the rule-based tissue structure. Furthermore, for the left ventricle (LV), we
propose novel rules for the transmural fibre and sheet orientation by fitting
them to literature-based DT-MRI data. The proposed regional transmural
fibre and sheet angle rules based on DT-MRI measurements of the left ventri-
cle show an improved fit to DT-MRI data compared to existing 2-parameter
functions (e.g., [166]) and can be readily integrated into established methods
(e.g. [167, 169, 171]).

3.2 Methods

The approach of the novel LDRBM is fundamentally inspired by the works of
Jones [236] and Yezzi [237]. Based on the solution of Eq. (3.1), the common
basic idea is to find the transmural trajectory from the inner surface to the outer
surface, such as via the assessment of the cortical and myocardial thickness.
While [236] constructs equipotential surfaces (isolines) and sums up the length
(straight lines) between all the equipotential surfaces, [237] solves two first-order
differential equations to find the transmural trajectory/path from an arbitrary
point in the domain to the inner (endocardium) and outer (epicardium) surface,
respectively. Yezzi [237] proposed a finite-difference scheme via upwinding to
solve the differential equations. This approach is widely used (e.g., for the
assessment of regional left ventricular [252] or bi-atrial [253] wall thickness).
However, we adapt the method by [237] and develop a finite element-based
discontinuous Galerkin framework to solve these equations directly on the
unstructured tetrahedral mesh. The finite element-based framework has the
crucial merits that the transmural thickness and depth can be computed on
the same tetrahedral mesh like the subsequent electromechanical simulation of
the cardiac cycle, it is not limited to structured meshes in the finite difference
framework and allows, due to the modularity of the framework, a simple
integration into existing approaches (e.g., [167, 169]). Further, the method can
be readily used to assess the local myocardial thickness during the cardiac cycle
on the deformed mesh (local myocardial thickness is an important indicator
for the health condition of the heart/myocardium [254]).
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3 Orthotropic tissue structure model

Figure 3.5: Workflow: from medical imaging to the orthotropic tissue structure
in the finite element model. Reprinted with permission from [170].
Copyright (©) 2022 ASME.

In the following, the basic workflow of the proposed LDRBM is described.
Fig. 3.5 illustrates the step-by-step workflow (step (D) — ®) exemplified by a
patient-specific LV. While the general workflow from step (@) — is based on
the method in [167], step B — () is the novel modular discontinuous Galerkin
framework in order to ensure an accurate transmural depth d. Table 3.2
provides a pseudo-code that summarises the sequential steps of the proposed
LDRBM. The entire framework is set up within the open-source finite element
software FEniCS [255, 256]. The geometry is obtained via segmentation of the
MRI data. From the segmentation, a smooth geometrical model for the finite
element simulation is derived and subsequently discretised with tetrahedral
finite elements, see Fig. 3.5 — steps (1,2 and @). In step @), we assess the
three-dimensional transmural thickness of the myocardium based on Eq. (3.1),
following the approach by [167, 169]. Based on Eq. (3.1), more precisely
the normalised gradient field of its solution (Eq. (3.22)), we are going to
subsequently solve two first-order PDEs (Eq. (3.23) and Eq. (3.24), see step
(®),®) in order to find the arc length of the path to the endocardium Lo(X)
and epicardium L1(X). In step @), based on Eq. (3.42), we compute the
local longitudinal /apicobasal direction T, (X). Finally, in step (), based on
the proposed and fitted rules for the fibre angle o and sheet angle 5 from
Eq. (3.47) and (3.48), the final orthotropic tissue structure is computed.
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Table 3.2: Pseudo-code — DG-based orthotropic tissue structure for computa-
tional heart models.

@ segmenting myocardium

(@ smoothing geometrical model

® generating mesh for the cardiac simulation

@ solving Laplace problem in Eq. (3.1)
computing T¢(X) — Eq. (3.22)

®) solving equations for transmural path to endo
computing Lo(X) — Eq. (3.23)

(® solving equations for transmural path to epi
computing L1(X) — Eq. (3.24)
computing dpa(X) — Eq. (3.38)

(D computing apicobasal direction in Eq. (3.39)
computing T,(X) — Eq. (3.42)

assigning local coordinate systems
fitting rules for fibre and sheet angle — Eq. (3.50)
computing Cr.5(X) — Eq. (3.43),(3.44),(3.45)
computing Crat(X) — Eq. (3.46)

3.2.1 Normalised gradient vector field

The transmural path direction/ tangent of unit length T4 (X)) is computed by

Vd(X)

T X) = a@)

(3.22)

where the gradient is based on the solution d(X) from Eq. (3.1). The vector
field Ty (X)) is visualised in Fig. 3.6 — path A—A’, illustrating a 2D transmural
path through the left ventricular wall. It is worth noting that one can construct
any kind of vector field, which serves as the transmural path direction. However,
we believe that the transmural path based on the gradient field in Eq. (3.22)
is a reasonable model assumption.

3.2.2 Transmural path length

Following the approach in [237], the arc length functions of the corresponding
transmural path to the endocardium (Lo(X) in Eq. (3.23) and Fig. 3.6 —
path A(X)-A) and epicardium (L;(X) in Eq. (3.24) and Fig. 3.6 — path
A(X)-A"), considering an arbitrary point X in the domain By, are computed
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3 Orthotropic tissue structure model

Figure 3.6: Illustration of the possible transmural paths in a 2D slice of the left
ventricle to show the non-trivial assessment. All three arbitrary
sketched paths (1-3) seem to be plausible as a transmural path
through an arbitrary point B(z) in the domain. The path A-A’
is obtained by the solution of Eq. (3.1)/(3.22). Reprinted with
permission from [170]. Copyright (©) 2022 ASME.

by the following first-order PDEs

VLo(X) - Ty (X)

—VLi(X) - Ty(X)

in By VX € Bo7 (323)

1
1 in By VX € Bo, (3.24)

with the corresponding Dirichlet boundary conditions

Lo(X) =
Li(X) =

on 850,en vX e 880,en, (325)
on 880,@; VX € 8Bo,ep. (326)

In a physical sense, Eq. (3.23) and Eq. (3.24) can be considered a pure
advection problem, one that describes the motion of particles with a prescribed
velocity field T#(X). As already mentioned above, these equations are those
utilised in, for instance [253], to estimate the wall thickness of a 3D bi-atrial
chamber. In [252], they compared the obtained wall thickness between two
widely used imaging techniques, namely 2D echocardiography and cardiac
cine-magnetic resonance imaging (MRI). Both approaches are based, like [237],
on a finite difference approach, which commonly discretises the domain by
means of a structured grid. This is feasible for the assessment of the thickness
of arbitrary domains (e.g., via segmentation of the cortical thickness or the
myocardium based on MRI or echocardiography data). Nevertheless, to utilise
the thickness information from the finite difference domain in a finite element
cardiac simulation with unstructured tetrahedral meshes requires interpola-
tion/mapping, which can be cumbersome, error-prone and emphasises solving
these linear PDEs directly on the finite element mesh.

In the following, we only introduce the weak formulation of Eq. (3.23) since
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Eq. (3.24) follows analogously. The formulation is based on a discontinuous
Galerkin approximation. More details about the discontinuous Galerkin ap-
proximation can be found in [257, 246].

The vector field T¢(X) from Eq. (3.22) is a vector-valued function defined on
Bo. We define the inflow 0Bg e, and outflow 0Bg.ep boundaries as follows

0Bo,en ={X € 9B : Ty (x) - n(x) < 0}, (3.27)

OBo,ep = {X € 0By : T¢(x) - n(x) > 0}, (3.28)

where n(X) denotes the unit outward normal vector to 0By at X € 0By. Let
b€ L?(By), g € L?(0Bo.en). We consider the following boundary value problem
VLo(X) - Ty(X)=b in By VX € Bo, (3.29)
Lo(X)=g on OBo,en VX € 0Bo,en, (3.30)

where b = 1 and g = 0. The geometry is approximated by the following
discretised domain Bl

By = B, (3.31)
e=1

where B&e represents a single finite element in the discretised domain BE.
We introduce average {-} and jump [] operators of scalar- and vector-valued
functions across the facets of B

W=+ v), W=t on e AN, (33

where F;™ is the set of interior facets fin: and 1 is a scalar function, piecewise

smooth on BY, with ¢ := ‘B{)" o The analogous definition holds for a vector-
valued function T, piecewise smooth on Bf, see [246]. The unit normal vectors
n’ and n’ are defined on fi,, pointing outwards to B&i and Bg’j with ¢ # j,
respectively.

The finite element space of discontinuous piecewise polynomial functions V/® is
given as

Vi = {on € L*(Bo) : wnlpy € Pr(Bo.) VBi. € Bo}, (3.33)

where Py is the space of polynomials of degree k or less (k > 0). By multiplying
Eq. (3.29) with the test function v;, € V,f, integration by parts, and using the
divergence theorem, we obtain

> (/*LOV-(vah) dx+/ (Tf~n)Lovhds)

B _eBl h
0.€B0 Bl a8l .

= Z / b vy dz.

Bh _eBbzh
0,e OBO,e

(3.34)
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Following [257, 246], we rewrite as follows

> /(Tf~n) Lovpds= Y /{TfLo}.[[vh]] ds

h h .
By €8] oBl . fint€Fny

- v / (TyLo} - [on] ds+ (3.35)

fint QaBO,en fint

Z Ty -n g v, ds.
fintcaBO,en fz

nt

For stability, we make use of the common upwinding scheme and substitute on
every internal facet the average {TyLo} from Eq. (3.35) by

Ty L} if Ty-n' >0
{TyLo}up = TH LY, if Ty-n' <0 (3.36)
Ti{Lo} if Tf-n'=0.

After solving Eq. (3.23) and Eq. (3.24), it follows that the transmural thickness
W(X) of the myocardium is given by [237]

W(X) = Lo(X) + L1(X), (3.37)

which leads to the normalised discontinuous Galerkin-based transmural depth

dpa(X) = . (3.38)

3.2.3 Longitudinal axis

The basic idea to compute the local material coordinate system based on the
transmural thickness can be found [167]. To construct the local reference coor-
dinate system, the transmural direction Ty (X), the transmural depth dpa(X)
as well as the longitudinal or apicobasal direction — we call it T, (X ) — need to
be known. With the previously determined transmural direction Ty (X) and
transmural depth dpe(X) at hand, we solve a Laplace problem to determine
the local longitudinal axis

Aa(X) =0 in By VX € Bo. (3.39)
We define Dirichlet boundary conditions

a(X)=0 on OBoap VX € 0Bo,ap, (3.40)
1 on  0Bobe VX € 0Bobas (3.41)
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where 0B qp is a small apical, epicardial subregion and 9By, is the basal
plane. Subsequently, the normalised gradient vector field T4, (X), which serves
as the local longitudinal direction, is given by

Va(X)

LX) = [Sa@)

(3.42)

3.2.4 Local reference coordinate system

Following [167], with the determined transmural direction Ty (X)), transmu-
ral depth dpe(X) and longitudinal or apicobasal direction T,(X), the local
orthonormal reference coordinate system Chcr(X) = [¢(X), (X)), r(X)] is de-
fined by

1(X) = T.(X), (3.43)
_ Ti(X) - (UX) - Ty (X))UX)

r(X) 1T/ (X) — U(X) - T X)X (3.44)

e(X) =1(X) x r(X). (3.45)

3.2.5 Local material coordinate system

For a given point in the domain By, the local orthonormal material coordinate
system is obtained by Crat(X)=[f(X),n(X), s(X)]

1 0 0 cos(a) —sin(a) O
Cmat = |0 cos(8) sin(B) sin(a)  cos(a) 0] Chrey, (3.46)
0 —sin(B) cos(B) 0 0 1

where o and 3 are the fibre and sheet angle, respectively.

3.2.6 Transmural fibre and sheet rules

Adapted from the 2-parameter rules in [165, 163, 166], we propose a 3- and
4-parameter rule for the fibre angle o and the sheet angle 3, respectively

a(X) = Rx*sgn(M(X))|M(X)|" + R", (3.47)
B(X) = B2H(X) — 1) + B, (3.48)

with H(X) = (14-exp(— K (2(dpe(X)+T)—1))) " and M(X) = 1 — 2dpc(X).
The parameters R, R*,n, B, B*, K, T' € N influence the specific characteristic
of the rules. We additionally introduce the parameters R* and B™ in order
to allow an angle shift on the endocardium and epicardium, respectively. In
Eq. (3.48), the parameter T allows a shift of the rule along the transmural
direction.
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3 Orthotropic tissue structure model

To obtain a meaningful parameter set for the rules in Eq. (3.47) and (3.48),
we optimise the parameters R, R*,n, B, B*, K and T by fitting the rules to
DT-MRI derived data [86].

In order to fit DT-MRI one can perform the following optimisation

NEeTP
. 2 : -1
min <COS

=0

quG(H') ) qiDT—]WRI

I aP () Il g 5|

which minimises the sum of squared angles between the measured local material
orientation qiD T=MRI' and the discontinuous Galerkin-based orientation gP¢
computed by the rules in Eq. (3.47) and (3.48). Due to a lack of DT-MRI data,
we utilise 2D post-processed DT-MRI-based rules for the fibre and sheet angle
over the transmural depth [86]. In [86], these rules are provided for different
parts of the ventricle, namely the apical-septal, apical-anterior, apical-lateral,
apical-posterior, basal-septal, basal-anterior, basal-lateral and basal-posterior
subregions. We determine distinct parameter sets for all subregions as well
as an additional, simultaneous fit over all subregions, see Section 3.3.3. We
perform the following optimisation

)2 , (3.49)

s VoY
. i _iy2

mind > (5(1) = 7)), (3.50)

j=1 i=1
where 7] represents a data point for i = 1,... ,Nf].z)p, with N(efp being the
number of data points throughout the local transmural path in the j-th region.
Further, j =1,..., S indicates the number of the subregion in the myocardium
and ~;(p) is the angle predicted by the rules in Eq. (3.47) and (3.48). The
vector p contains the respective parameter set, where p = [R,n,R*]T for

the fibre angle in Eq. (3.47) and p = [B, K, B*,T|” for the sheet angle in
Eq. (3.48).

3.2.7 Mesh generation and definition of boundary surfaces

For the finite element mesh generation, the open source 3D finite element mesh
generator Gmsh was utilised [258]. After importing the geometrical model,
for instance as an .stp-file, the necessary boundary surfaces (endocardial,
epicardial, apical and basal regions) are defined via the graphical user interface
under geometry -> physical groups -> add -> surfaces. Subsequently, the
geometry is meshed with 172023 tetrahedral elements, stored as an .msh-file
and imported into the FEniCS environment. The code snippet to import, read
and store the mesh information including the boundary surfaces is given in
Listing 3.1.
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Listing 3.1: Code snippet - import .msh. file from Gmsh for FEniCS.

import meshio

import numpy as np

from dolfin import Mesh, XDMFFile,
File, MeshValueCollection, cpp,
DirichletBC, FunctionSpace,

# write and read mesh information
msh = meshio.read ("AnyMesh.msh")
meshio. write ("mesh.xdmf",

meshio . Mesh ( =msh. s
={"tetra": msh. ["tetra"]}))
meshio. write ("physical boundaries.xdmf",
meshio . Mesh ( =msh. s
={"triangle": msh. ["triangle"]},
={"triangle": {"name to read":
msh. ["triangle"|["gmsh: physical"]}}))

mesh = Mesh ()

with XDMFFile("mesh.xdmf") as infile:
infile .read (mesh)

File ("mesh.pvd"). write (mesh)

mvc = MeshValueCollection("size t", mesh, 2)
with XDMFFile("physical boundaries.xdmf") as infile:
infile.read (mvc, "name to_ read")

# contains the defined boundaries in Gmsh
mf = cpp.mesh. MeshFunctionSizet (mesh, mvc)
File ("boundaries.pvd"). write (mf)

V = FunctionSpace (mesh, 'CG’, 2)

# definition Dirichlet b.c. based on GMSH mesh marks
bc = DirichletBC(V, Constant (0.2), mf, 3)

3.3 Results

The results of the derived LDRBM as applied to an idealised geometry (hollow
cylinder from Fig. 3.4) and an MRI-based patient-specific geometry of an
LV are described below. Further, we present the optimised parameters for
Eq. (3.47) and (3.48) for the distinct subregions of the myocardium as well as
for the simultaneous fit in Tab. 3.3.
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3.3.1 Hollow cylinder

In Fig. 3.1 (a) and (b), the difference in transmural depth dpg(X) for
Eq. (3.38) and d(X) for Eq. (3.1) is depicted. While Eq. (3.38) yields a linear
change in transmural depth along the path Ao—Bi as desired, the Laplace
solution in Fig. 3.1 (b) shows a nonlinear change in transmural depth, which is
also visualised for different values of a, in Fig. 3.2. Fig. 3.1 (c,#®e) shows the
comparison for an assumed linear fibre angle distribution through the wall. The
discontinuous Galerkin-based method improves the accuracy of the transmural
depth and therewith the definition of the local material coordinate system
Chnat. Fig. 3.7 shows the assignment of the local reference coordinate system
Cres from Section 3.2.4 for the hollow cylinder. The solution of Eq. (3.43) is
depicted in Fig. 3.7 (a) (longitudinal direction I @), the solution of Eq. (3.44) in
Fig. 3.7 (b) (radial direction r ®) and the solution of Eq. (3.45) in Fig. 3.7 (c)
(circumferential direction ¢ ®). In Fig. 3.7 (d), the local reference coordinate
system at an arbitrary material point X in the computational domain is shown.
The final local fibre direction f is visualised in Fig. 3.8 (a).

3.3.2 Left ventricle

Fig. 3.8 (b) and Fig. 3.9 (a) and (b) visualise the fibre direction f for the
LV in its layered structure. In Fig. 3.9 (c), the sheet orientation of the LV
is shown. The parameters for the visualisation are set to: R = 45, R* = 0,
B =45 B*=0,n=1, K =10, T = 0. We analysed the computational
time by comparing the processor time of the approach in [167] and the novel
LDRBM=] (mesh of 172023 tetrahedral elements, 2,8 GHz Intel Core i7, 16 GB
RAM). The total processor time slightly increased by 33.00s which corresponds
to an increase of 5.96 %.

3.3.3 Fitting rule-based fibre and sheet rules

For the fibre and sheet angle rules, DT-MRI-data published in [86] is utilised.
In [86], the fibre and laminar structure in the healthy human heart were
investigated ex vivo. The different subregions of the ventricle (basal-apical,
basal-anterior etc.) can be found in Tab. 3.3 and [86]. Please note that the
definition of the sheet angle § is different compared to [86] (8 = Bse] — 5)-
We solve the optimisation problem in Eq. (3.50) to determine the global (all 8
subregions) best fit for the ventricle as well as the distinct fit for each subregion,
see Tab. 3.3. The error ey g is computed as the averaged deviation

S
1 1 _ _Z_
cas = \| g 2 e 2 (0 (Bmin) = 7). (3:51)
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(a) longitudinal direction I. (b) radial direction r.

l

C

(c) circumferential direction c. (d) reference coordinate system Cly.

Figure 3.7: (a)-(c) longitudinal direction ! (¢) from Eq. (3.43), radial direction
r () from Eq. (3.44) and circumferential direction ¢ (®) from
Eq. (3.45). (d) assignment of the local reference coordinate system
Crey from Section 3.2.4. Reprinted with permission from [170].
Copyright © 2022 ASME.

(a) fibre vector f - cylinder. (b) fibre vector f - ventricle.

Figure 3.8: (a) fibre direction f of the hollow cylinder. (b) fibre direction f of
the left ventricle. Reprinted with permission from [170]. Copyright
© 2022 ASME.
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(a)

Figure 3.9: (a)-(b) layer-wise visualisation of the transmural change in fibre
direction f in the left ventricle. (c) layer-wise visualisation of
the transmural change in sheet direction s in the left ventricle.
Reprinted with permission from [170]. Copyright © 2022 ASME.

In Fig. 3.10, single fits for the apical and basal subregions based on the data
in [86] are shown. It can be observed that the error e, is slightly smaller in
the basal region due to the almost linear fibre distribution in [86]. In Fig. 3.11,
single fits of Eq. (3.48) for the apical and basal subregions based on the data
in [86] are shown. It can be observed that the error eg is slightly smaller in
the basal regions (3 out of 4 regions). Due to the higher complexity in the
measured sheet distribution compared to the fibre distribution, the error eg
exceeds e, in all eight subregions. In Fig. 3.12, the simultaneous fits (®) of
Eq. (3.47) and Eq. (3.48) over all eight subregions are shown. Comparing the
original 2-parameter rules for the fibre and sheet angle e.g. in [166] with the
proposed functions in Eq. (3.47) and Eq. (3.48), a distinct improvement in the
fits for all eight subregions as well as for the simultaneous fits can be observed,
see eq / ea([166]) and es / eg([166]) in Tab. 3.3. All fitted parameters and
errors can be found in Tab. 3.3.
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DTMRI and rule-based fibre angle a — apical

DTMRI [86] === apical-septal
DTMRI [86] === apical-anterior
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DTMRI and rule-based fibre angle a — basal
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Figure 3.10:
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transmural depth d

Single fits of Eq. (3.47) for the fibre angle « in the apical regions
(top). Single fits of Eq. (3.47) for the fibre angle « in the
basal regions (bottom). Reprinted with permission from [170].
Copyright (©) 2022 ASME.
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3 Orthotropic tissue structure model

DTMRI and rule-based sheet angle 5 — apical
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Single fits of Eq. (3.48) for the sheet angle 8 in the apical regions
(top). Single fits of Eq. (3.48) for the sheet angle § in the
basal regions (bottom). Reprinted with permission from [170].
Copyright (©) 2022 ASME.
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3.3 Results

DTMRI and rule-based fibre angle a — simult. fit
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Simultaneous fit of Eq. (3.47) for the fibre angle « in the apical
and basal regions (top). Simultaneous fit of Eq. (3.48) for the
sheet angle § in the apical and basal regions (bottom). Reprinted
with permission from [170]. Copyright (©) 2022 ASME.
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3 Orthotropic tissue structure model

Table 3.3: The fibre angle o and sheet angle 8 were determined for different regions of the heart (basal-apical, basal-
anterior, etc.). We used the optimisation problem in Eq. (3.50) to find the global best fit for the LV as well
as the distinct fits for each subregion; upper and lower bounds for the optimisation: pa,iow = [0,0, Iwgﬁ
Woup = [90,50,90]7, pg 10w = [0,1, =90, =17, ps.up = [90,50,90,1]7. Reprinted with permission from

[170]. Copyright ©) 2022 ASME.

Region R n R* €a ea(l166))| B K B* T es es([166])
basal — sept. 45.682  0.950 -2.989 | 2.453 3.846 6.284 7.003 -20.787  0.342 2.811 16.923
basal — ant. 46.110 0.827 13.345 | 2.238 13.524 | 50.662 32.183 4.423 -0.138 | 12.629 | 35.648
basal — lat. 30.694  1.058 -1.058 | 1.794 9.876 41.874 12.530 10.392 -0.197 | 2.811 17.655
basal — post. 34.299  0.967 21.976 | 1.192 21.891 | 37.107 21.759 11.554 -0.352 | 9.636 27.483
apical — sept. | 38.084 0.892 -1.863 | 2.758 3.328 44.057 11.494 -6.138 -0.021 | 7.368 11.680
apical — ant. 34.242  0.538 20.338 | 8.651 22.101 | 39.283 28.809 7.837 -0.203 | 13.497 | 31.485
apical — lat. 27.926  0.607 14.703 | 3.648 15.148 | 30.563 18.382 9.691 -0.150 | 3.737 14.857
apical — post. | 37.282 0.710 23.287 | 3.268 23.511 | 32.438 13.975 -0.005 -0.271 | 9.299 27.927
simult. fit 37.190 0.816 12.526 | 10.899 | 16.604 | 31.878 12.565 2.120 -0.191 | 21.029 | 28.069
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3.4 Summary

3.4 Summary

A new LDRBM is proposed for the computation of the orthotropic tissue
structure in cardiac finite element models. To accurately assess the transmural
path and depth in unstructured finite element domains, we propose a discon-
tinuous Galerkin-based approach. The accurate transmural depth leads to
a correct representation of the transmural fibre and sheet angle rules along
complex transmural paths. We illustrate the method through an example
of a hollow cylinder and show the difference compared to existing methods
([167, 168]). The finite element-based framework has the essential benefits
that the transmural thickness and depth can be instantly computed on the
unstructured tetrahedral mesh of the subsequent electromechanical simulation,
in other words, it is not limited to structured meshes in the finite difference
framework and therefore allows, due to the modularity of the framework, a
straightforward integration into existing LDRBMs (e.g. [167, 169]). Setting up
the entire framework within the open-source finite element software FEniCS
[255, 256] guarantees a user-friendly and straightforward implementation. The
framework is not limited to cardiac models and can also readily be used to
assess the thickness in a variety of complex geometrical shapes such as the
cerebral cortex. Further, the thickness assessment can be also utilised as
a post-processing feature for the electromechanically coupled finite element
simulation of the cardiac cycle (e.g. at every time step) as the wall thickness
plays an important role in clinical interpretation (risk indicator). The proposed
rules for the fibre and sheet angle show a distinct improvement compared to
existing 2-parameter functions from e.g. [166].

It is important to remark that we need a common convention for all rule-based
approaches on how the transmural depth is determined during experimental
observation (e.g. DT-MRI) and in computational models. Without a conven-
tion, the rule-based modelling of the orthotropic tissue structure can not be
consistent with the experimentally derived rules.

For more complex models, such as papillary muscles or trabeculations, the
approach can be extended, see [167]. To use the fitted rules of the distinct
subregions in Tab. 3.3 for cardiac electromechanical simulations, an interpola-
tion method has to be utilised to ensure a smooth transition zone of adjacent
subregions and, consequently, improve the numerical stability.
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4 Cardiac muscle model

In the following Chapter, the electromechanical model of the cardiac tissue
is described. The balance equations were already introduced in Chapter 2.
The constitutive equations for the passive and active mechanics, electrophysi-
ology and mechano-electrical feedback (MEF) are discussed in Section 4.1. In
Section 4.2, the geometrical model based on MRI data is presented and infor-
mation about the MRI device and measurement of the healthy subject-specific
LV are provided. The mechanical boundary conditions and Windkessel model
are introduced in Section 4.3 and Section 4.4, respectively. In Section 4.5, the
different orthotropic tissue structures based on the LDRBMs are visualised.
Finally, the weak form of the electromechanical problem, its linearisation and
discretisation are presented in Section 4.6.

4.1 Constitutive equations

Mechanical constitutive equations The passive material characteristic of the
cardiac tissue is modelled via the well-known orthotropic Holzapfel-Ogden
strain energy density function Wgo, see [87]. The passive part of the second
Piola-Kirchhoff stress tensor SP* is defined as the derivative of the strain
energy density function Wp,s w.r.t. the right Cauchy-Green tensor C

OV¥pas
Spas = g2k (4.1)

where the corresponding specific strain-energy function ¥y, is defined as
Uous = Uy (J) + Yuo(I1, Luy, Lss, Isys), (4.2)
with the volumetric part
Uy (J) = r(J —1)2, (4.3)

where k denotes the bulk modulus of the material. The orthotropic Holzapfel-
Ogden strain energy density function Vo is given as

Uno (I, Tag, Tas, Ings) = 2%exp[b(1f1 -3+ Y %‘_{exp[bi@i —1)Y -1}

i=f,s
isotropic term transversely isotropic terms
a 72
+ L [exp(bysIags) — 1], (4.4)
2bys

orthotropic term
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4 Cardiac muscle model

shear stress o (kPa)

shear strain ~y (-)

Figure 4.1: Comparison of the stress-strain curves for the six different shear
modes based on the Holzapfel-Ogden model (solid lines) and the
experimental shear data from [88] (asterisks). Reprinted with
permission from [180]. Copyright (©) 2023 by J. Biomech.

where the isochoric invariants I_l, I_4f, I_4S, I_gfs are based on the the isochoric
right Cauchy-Green tensor C°. The model consists of an isotropic term
representing the matrix material behaviour. Additionally, a transversally
isotropic and a coupling term with respect to the fibre and sheet direction
f and s are introduced. The invariants I4y and I4s are the stretch-related
invariants. Igys reflects the coupling between the fibre and sheet stretches. In
total, eight material parameters a,b, af, as, by, bs, afs,bss in Eq. (4.4) must be
identified. The parameters a and b denote the matrix response. The myocardial
fibres are represented by the parameters ay and by, while as and bs account
for the sheet direction. The coupling between the fibre and sheet direction is
described by the parameters ass,brs. To obtain a parameter set for healthy
human cardiac tissue, the model is fitted to shear experiments from [88]. The
fitted curves for the different shear directions can be found in Fig. 4.1.
The active part of the second Piola-Kirchhoff stress tensor S is defined
as the derivative of the strain energy density function W,.¢ w.r.t. the right
Cauchy-Green tensor C

§act = 2%%act (4.5)

where the corresponding specific strain-energy function W, is defined as

Wact = %V(Ij - 1)2 (46)
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4.1 Constitutive equations

The parameter v defines the active modulus and If is the elastic part of the
fourth invariant. More details of the model can be found in [121].

In order to account for the active contraction of the cardiac tissue, the defor-
mation gradient F is multiplicatively decomposed and reads

F = F°F°, (4.7)

where F? represents the active part and F° is the elastic part, see also [121].
Based on the experimental observation in [259], active stress along the cross
fibre direction m is included (a factor of 0.5 compared to the active stress in
fibre direction f). The following equations describe the evolution of the active
stress depending on the multiplicatively decomposed deformation gradient F

set=2 [ (I5 — F’“Mf(F“)F’“T] , (4.8)
i€{f.n}
M (F) = ko ® ko, ko = (F ko) /||F“ko||, (4.9)
F'O) =1+ > (\(9) - )M, (4.10)
i€{f.n}
My = fo ® fo, My =m0 ® no, (4.11)
N(g) = —Shmas (4.12)
T T g0 E) — 1) '
glc(ge)) = % + %arctan(ﬁ Inc(¢e)), (4.13)
§= M7 (4.14)

g(CO) - )‘gnax

where in Eq. (4.8) Isy and I4, are the fourth invariants in the fibre and sheet-
normal directions, respectively [87]. The normalised calcium concentration ¢
depends on the normalised TP ¢. and additional parameters k, ¢, where co
represents the initial calcium concentration at ¢ = to. The parameter \* is
the active stretch. Equations (4.12)—(4.14) describe the coupling between the
electrophysiological quantities and mechanics.

Constitutive equations for electrophysiology and MEF The electrical constitu-
tive equation can be represented as an additive decomposition into an electrical
part F.¥ and a source term F,£ which accounts for the TP generation arising
due to mechanical deformation (mechano-electrical feedback). The nonlinear
source term F? reads

F*=F2 +F2, (4.15)
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4 Cardiac muscle model

with F2 being described by the model presented in [110]
F2(@,r) = "2 12 (g0, m). (4.16)
t

FE(Ge,m) = che(de — ae)(1 — de) — o, (4.17)

where kg and k; are conversion parameters, a. and c are material parameters,
and 7 is the recovery variable that guarantees a return to resting potential.
The conversion of the TP ¢ and time t reads as

P =kg.pe —0p.,  t= ki, (4.18)

with the potential difference d,, and ¢ representing the dimensionless time.
The evolution of the recovery variable r is governed by the local ordinary
differential equation

= {wu:‘f@} [ — c®(P — B — 1)], (4.19)

where the variables p1, p2, S and v are additional material parameters. The
action potential duration and the effective refractory period are controlled
by B [148, 134]. For the mechanically induced electrical source term F? we
utilise the model presented in [116, 128§]

FA(C. ) = 22 12(C.00), (4.20)
FA(C, ¢e) = 9Gs (A — 1) (¢s — be) (4.21)

with the parameter G5 describing the maximum conductance. The potential ¢s
determines the potential level at which no deformation can cause any current
generation. The variable ¥ controls the activation of the MEF. For fibres under
tension (A = \/E > 1) ¥ = 1, while for fibres under compression or in the
initial configuration (A = y/Is;y < 1) ¥ = 0 [116, 128].

4.2 Geometrical model via MRI

MRI was performed on one 24-year-old healthy female volunteer after an
ethically verified informed consent form was signed (internal study approval ID
number 3818, Pediatric Cardiology, Friedrich-Alexander-Universitdt Erlangen-
Nirnberg). Electrocardiogram (ECG) triggered 3D whole heart balanced SSFP
imaging with fat suppression is carried out on a 3T MR scanner (MAGNETOM
Vida Siemens Healthineers, Erlangen, Germany) in end-systolic and end-
diastolic phases, while acquisition is realised in the transverse plane. The
following parameters are set for the measurement: TR/TE 3.8 ms/1.4 ms;
flip angle 60°; number of cardiac phases 1; temporal resolution 60-100 ms;
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4.2 Geometrical model via MRI

number of signal averages 1; voxel size 0.5 mm x 0,5 mm x 0.5 mm; number of
slices in anteroposterior direction 120. The end-diastolic geometry is defined by
the frame with the largest LV cavity, while the end-systolic geometry is defined
by the frame with the smallest LV cavity. Threshold-based segmentation with
3D Slicer (free open source software application for medical image computing,
see [260]) is utilised to generate the 3D-.stl-file (geometry) of the LV in end-
systolic and end-diastolic phase.

From the MRI-based derived end-diastolic (ED) and end-systolic (ES) geometry
of the LV, we measured the geometrical properties shown in Fig. 4.2 (a) (long
axis view; measurement points ®). Each data point (z%,z}), is created by

ben |bep

(a) Measurement points. (b) Fitted Geometry.

Figure 4.2: (a) visualisation of the measurement points and fitted parameters
of the ellipses. (b) fitted stress-free geometry. Reprinted with
permission from [180]. Copyright (©) 2023 by J. Biomech.

averaging eight measurement points in the short axis plane (approx. every
45° around the z-axis) from the MRI-derived geometry. We assume an axis-
symmetric geometry with respect to the longitudinal z-axis. Thus, the averaged
measured points (2}, 25), i € {1,..,5}, j € {en, ep} from the MRI on the endo-
and epicardial surfaces (five in total; apex (1x), middle (2x) and base (2x)
region) are utilised to fit an ellipse centred at (0, z0). To obtain the fitted
ellipsoidal geometries for the ES and ED state, the following optimisation is
performed

- x;~2 (z; — 20)?
m;nz v + e 1, (4.22)
i=1 J

J
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4 Cardiac muscle model

where gt = (@en, ben, Gep, bep, 20). The variables aj, b; are representing the short
and long axis of the fitted ellipses for the endo- and epicardium, respectively.
Finally, by truncating the geometry at z = 0, the resulting geometrical models
in ED and ES state are obtained.

A stress-free state (no residual stresses, see [261]) localised between the end-
systolic and end-diastolic states [262, 263], an end-diastolic pressure (EDP) of
7.50 mmHg, and a constant compressibility with x = 110 kPa to ensure the
measured myocardial volume reduction during the systolic phase is assumed.
We use the fitted ED and ES geometry from Eq. (4.22) and linearly scale
the parameters (@en, ben, Gep, bep, 20) between ED and ES state to fit the end-
diastolic volume (EDV) under an acting end-diastolic pressure of 7.50 mmHg.
The best fit is obtained for a ratio of 6:4 between the ED and ES values
of @en, ben, Gep, bep, 2z0. The schematic workflow to determine the stress-free
configuration is depicted in Fig. 4.3. The parameters of the geometrical model
can be found in Tab. 5.1, Chapter 5.

Pressure

MRI - ED

MRI - ES

Volume

Figure 4.3: Schematic workflow to determine the stress-free configuration for
the electromechanical simulation. Reprinted with permission from
[180]. Copyright (©) 2023 by J. Biomech.
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4.3 Mechanical boundary condition

4.3 Mechanical boundary condition

For the mechanical boundary condition, the displacement for all nodes on the
basal surface is fixed in the longitudinal and circumferential direction (blue
surface at the base of the ventricle in Fig. 4.3. This leads to a free movement
of the basal surface in the radial direction. Each of the outer edge nodes (a
total number of n,,q=100 spring/dashpot pairs) on the basal surface (green
dots in Fig. 4.4 (b)) is attached to a linear spring/dashpot pair (purple lines
in Fig. 4.4 (a)), which allows to control the radial movement during diastole
and systole. We fit the spring and dashpot coefficients ks and kq as well as
the initial spring force Fjni: such that the end-diastolic and end-systolic radial
displacement of the measurements can be obtained.

(a) spring/dashpot system base region. (b) detail view nodes.

Figure 4.4: (a) spring/dashpot system on the outer line of the basal plane
(green line). A spring/dashpot pair (purple line) is connected to
each node (green dot) and fixed to the origin (yellow dot), see also
detail view in (b). Reprinted with permission from [180]. Copyright
(© 2023 by J. Biomech.

4.4 Windkessel model

The haemodynamics in this study is represented by the following five steps:

1. linear pressure increase starting from p;, = 0 mmHg to p;, = 7.50 mmHg
(assumed end-diastolic pressure (EDP); see [264, 265] with 4-10 mmHg),

2. isovolumetric contraction: p;, increases from EDP up to 70.00 mmHg
kPa,

3. ejection: the pressure in the aorta p, is described by the two-element
Windkessel model:
—dV(t a(t dpa (t
(t) _ palt) | dpat) (4.23)

dt R, dt
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4 Cardiac muscle model

where V(¢) is the current volume of the LV, R, is the peripheral resistance,
and C' represents the capacitance/total arterial compliance of the aorta.
By adding an additional resistance R,1, imitating the aortic valve, and
assuming that the blood flow between the LV and the aorta is proportional
to the pressure difference [46], the pressure in the LV reads as

—dV (t)
dt

Puo(t) = Rt +pa(t), (4.24)

4. isovolumetric relaxation, if the condition p;, < p. is satisfied,

5. early diastolic filling, if p;, drops under the EDP. In analogy to
Eq. (4.24), the following equation holds

—dV(¢)

Piv (t) - Rv2 dt

+ EDP, (4.25)

where R,2 represents the atrioventricular valve resistance.

The specific parameters C, R,1, Ry2 are provided in Tab. 5.1, Chapter 5.

4.5 Orthotropic tissue structure based on LDRBMs

The three LDRBMs, B-RBM, W-RBM and H-RBM,), introduced in the previous
chapter, are utilised to investigate the influence of the local tissue structure.
In Fig. 4.5, the computed fibre orientations for the derived left ventricular
geometry based on B-RBM, W-RBM and H-RBM are visualised.

(a) B-RBM (b) W-RBM (c) H-RBM

Figure 4.5: Fibre orientation for the methods B-RBM, W-RBM and H-RBM
for the subject-specific left ventricular geometry.
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4.6 Finite element formulation

4.6 Finite element formulation

The weak forms have already been introduced in Chapter 2. Assuming a quasi-
static problem and adding the pressure boundary condition on the endocardial
surface prv = piym, where n is the unit normal to the endocardial surface of
the domain B;. Consequently, the weak forms read

r"’:/Vz(&p):TdV—/éngo dv — / S -t da
Bo Bo

BtBt
- / d¢p - (—prv) da =0, (4.26)
3p By
r? :/5@4‘3 dV+/VI(6§b)-quf/6q§F‘p dv — / 8PG da = 0.
Bo Bo Bo 9q Bt
(4.27)

Linearisation Assuming conservative forces, i.e. the forces caused by the ex-
ternal traction ¢ and body force By remain unchanged during deformation,
the linearisation of Eq. (4.26) follows as

Ar? = Vz(dp) : Vo (Ap)T dV + Va2 (dp) : C*? : (gV.(Ap)) dV
Bo Bo
+ | V.(0p): C*TA® dV +/ Sp-n Apr, da
Bo ApBy
+ / 0@ - prv An da, (4.28)
ApBy

where Apryv and An represent the incremental form of the pressure and normal
vector, respectively. Analogously, linearisation of the internal and external
part of the weak form in Eq. (4.27) leads to

At = [ 5622 v+ [ V.(68)-D.V.(AG) dV
Bo At Bo
+ [ V.(68)-C* : (gV.(Ap)) dV (4.29)
Bo
— | 6B(H: (gV.(Ap))) +ISHAD dV. (4.30)
Bo

More details about the linearisation can be found in [121, 266].
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Discretisation With the spatial discretisation of the domain introduced in
Eq. (2.31), the element-wise approximations via shape functions N read

oo =D Nigh, Va(el) =3 @i @ VuN;,  (4.31)
j=1 j=1
dpe =) Nide, Va(0pl) =D 00 @ VuNi,  (4.32)
=1 i=1
o =) N, Va(8!) =" {V.N, (4.33)
=1 =1
00! =3 Nikbaf, V.60 =S 00{V.Ny,  (4.34)
k=1 k=1
V(2 =Y AQt @ V.N;,  V.(Adl) =3 AGV.N.  (435)
j=1 1=1

Omitting the sum signs in the previous Eq. (4.31) — (4.35) for the sake of
clarity and assuming summation over indices ¢, j, k and [, the discretised weak
forms follow as

Nel ~
Al / [5(,0? ® Vle] T dV — / Ni&pf - By dV — / Ni(SLpS -t da
BG,& B(})L,e OtB?,e
Nel,en
+ Al / Nidpi -prLv da| =0, (4.36)
opBP

Al /Nkaqi;és av + /[6¢§VxNk}~qu

h h
BG e Bg e

—/Nszﬂ dv — / Nyd®5q da| =0, (4.37)

h b
Bg e 9B} .
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4.6 Finite element formulation

where A represents the assembly operator. Equations (4.36) and (4.37) have

to hold for arbitrary variations, leading to the discrete global residual vector

nel
’r‘}p— /VZN -7 dV —/NBodV— / Nit da

0t8h
Nel,en
+ A / szLV da| = 0, (438)
9p B fe
re :eél /qu’s av + / VuNy-qdV
54 Bl
— / NeF? dv — / Nig da| = 0. (4.39)

The discrete forms of the linearised weak forms in Eq. (4.28) and (4.30) read

MNel
Arg = A / 508 ® VaNi] : C% : [Ag @ Vo N;] dV

h
BOe

+ [ 1665 © V.M (805 @ VLN lr) av

Bh

+ /([&pf@v,CNi]:cW)NlA@f dv
Bf

Nel,en

+ A / Nib; - prv Ang da

e=1
h
_BPBt,e

Nel,en

+ Al / N;dpi -n Appy,a da| (4.40)

_BPB;L,e
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Nel e 1 e
Ard zeél / (Nk5¢k)E(NZA¢l) v
5% .

+ /(MsngNk) -C3¥ - (Ap§ @ Vi N;) dV (4.41)

- /(Nkagb;)H:[Acpjégvaj] dv — [ (NeSS5)H(NAGS) dV
h

h
BU.e BO,e

Analogously to Eq. (4.36) and (4.37), Eq. (4.40) and (4.42) have to hold
for arbitrary variations. Finally, the cardiac model can be described by the
following system of equations

K77 K| [Aes| _ [-r7
{ng‘; Kzt | |AdL| — |-r]” (4.42)

where the stiffness matrix K¢% = K[; + K7, +K{¥ with

~ MNel
Kij-Apr=A / VoNi - C#? . V,N;
b
+ /(VxNi T -VuNj)g dV | - Apy,
By .
Nel,en
Ki; - Apy = Al / Niprv Ang da| - Ay,
apBL
Nel,en
K}pf ' A‘PJ = eél / Nin Aﬁlv,d dal - AQDL
aPBéL,e
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4.6 Finite element formulation

and

Nel

K7, -Adp=A /(VerC“"(P)Nl v | -Adp,

e=1
h
|55

Nel

Ky Apy=A /vak-Cq“P.vaj v

e=1
Bg’,e
— /(NkHVg;NJ)g dV 'ALPJ,
BS’,S
Mel 1
K7 -Adp=A /NRENmek-Dwvmm v
BS’,E
—/NkHNl dV | - A&y (4.43)
Bg,e
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5 Influence of orthotropic tissue structure on cardiac
function

In this chapter, we explore the extent to which LDRBM-based orthotropic
tissue structures influence the electromechanical characteristics of the cardiac
tissue model. In detail, we are utilising the three Laplace-Dirichlet-Rule-
Based-Methods B-RBM, W-RBM and H-RBM from Chapter 3 and compare
the local myofibre orientation, global characteristics (i.e., ejection fraction,
peak pressure, apex shortening, myocardial volume reduction, fractional wall
thickening, pressure-volume loop) as well as local (active fibre stress, fibre strain)
characteristics. Note that this Chapter is to a great extent based on [180].

5.1 Materials & Methods

5.1.1 Fully-coupled electromechanical heart model

The comparison is based on the electromechanical model introduced in the
previous Chapter 4. We perform three simulations with the local material
orientation obtained by the methods B-RBM, W-RBM and H-RBM. All
simulation parameters of the electromechanical model can be found in Tab. 5.1.

5.1.2 Characteristics for comparison

The quantitative comparison of the methods B-RBM, H-RBM and W-RBM is
based on the local orthotropic tissue orientation as well as on defined global
and local cardiac characteristics.

Local tissue orientation To visualise the differences in the local tissue orienta-
tion for B-RBM, H-RBM and W-RBM, we compare the local fibre direction f
of the MRI-based LV. The local difference in angle Ac is computed by

fB RBI\/I

Aol = 5.1
= (‘Hf] VI 17 RBM ||D &-1)

where ff represents the fibre vector for the methods j at the i-th integration
point, j € {H-RBM, W-RBM}, i = 1,..., N, and N,, is the total number of
integration points in the domain. The reference method B-RBM is defined by
_fiB_RBM. To ensure comparability, the fibre angle is set to & = +60° (4 on
endocardium and — on epicardium) and the sheet angle to 8 = 0° for B-RBM,
H-RBM and W-RBM (no sheet angle to set for W-RBM).
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5 Influence of orthotropic tissue structure on cardiac function

Global and local cardiac characteristics To quantitatively compare the different
approaches w.r.t. the electromechanical behaviour, we specify the following
global and local cardiac characteristics (end-diastolic state: ¢ = 0.0 ms; end-
systolic state: ¢ = 300.0 ms):
e global characteristics:
EDV-ESV

- tion fraction EF (%): EF = ————— . 1
ejection fraction (%): EDV 00%

developed peak pressure pmae (mmHg)

GED — AES

— apical shortening as (%): as = ——— - 100%
aED
~ volume reduction Vieq (%): Vieq = YVED-MVES ) 550/
MVEp
tw —tw
— fractional wall thickening t; (%): ty = —.B8 Z e D q00%

tw,ED
e local characteristics:
— active fibre stress of% (kPa)
— fibre strain €1,1 (%)

The local characteristics are computed by averaging the difference w.r.t. the
chosen reference method B-RBM at each integration point ¢ in the domain

7aBjRBM ‘-100%, (5.2)

with a € {0 <, e1,1} being the averaged local characteristics fibre stress and
fibre strain, ¢ = 1, ..., N, with N, being the total number of integration points
in the domain and j € {H-RBM, W-RBM}.

We additionally introduce a sensitivity marker

. AJ

J (&}
Se = Mja (53)

with

{AEFvA;maT7A£S7A{/ d7Agf7A.i.acf7 Z1,1}7 (54)
Mj = ma‘X{AijF7 A;’mam ’ A‘tjls ’ A{/red’ A{f ’ Aiclwlh A‘Zl,l } (55)
The index j € {H-RBM, W-RBM} defines the given methods. The deviations
from the reference method B-RBM are given by AJ % for the global

charactel_"lsmcs b € {EF, pmaz, as, Vyea, ty}. In the following, the sensitivity
marker s? has the following classification: 0.0-0.25: low (e), 0.25-0.50: moderate
(), 0.50-1.0: high (e).
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5.2 Results

Table 5.1: Parameters for the electromechanical simulation.

active

passive

conduction

excitation

MEF
conversion

‘Windkessel model

k=020 [],g=0.2[], 8=5.0[],
vy =0.0075 [-], vn = 0.00375 [-], A%, = 0.046 [-],

a = 0.987 kPa, b = 6.874 [-], ay = 3.890 kPa,

by = 17.382 [-], as = 0.0333 kPa, by = 67.398 [-],
ajs = 0.392 kPa, by, = 0.054 [-], k = 110 kPa,
diso = 0.15mm?ms ™!, dgp; = 1.5mm?ms™ !,

ae =001[], Be =03 [],c=8[], v=1x107%[],
w1 = 0.2 [-], p2 = 0.3 [-], # = —60mV for ¢ €[0,20]ms
Gs =10 [-], ¢s = 0.6 [-],

kg, = 100mV, 64, = 80mV, ky = 12.9ms,

Rp = 30.0 kPa ms mL™ !, R,1 =1.15 kPa ms mL ™!

C =8 mL kPa~! ms™!, Ry =1.70 kPa ms mL !
ks = 1.8mN mm~ !, kg = 1.0mN ms mm ™!, Fj,;; = 18mN
W-RBM: see [168]; a = +60°,

spring/dashpot

orientation tissue structure
B-RBM: R=60,R*=0,n=1,B=0,B*=0,K=1,T =0,
H-RBM: R=60,R*=0,n=1,B=0,B*=0,K=1,T =0,

aINT — 48 58mm, bIVT = 94.41mm,

geometrical properties en y ben

aINT =63.63mm, bIN'T =107.26mm, 2fNT =21.18mm.

5.2 Results

5.2.1 Comparison of the local fibre orientation

A visualisation of the local difference in fibre direction f in terms of Aa/
based on Eq. (5.1) is depicted in Fig. 5.1 (a) and (b). The colour code
shows Aa; at every integration point ¢ in the LV. Fig. 5.1 (a) illustrates Aay
between the methods B-RBM and H-RBM. As observed in [170] for the hollow
cylinder, the most significant difference is located close to the middle layers
of the myocardium (yellow spots in the base region; Aa; > 10°), see also
Fig. 3.4 in Chapter 3. This result is underlined through Fig. 5.5 (b), where the
difference is most significant in the transmural subregion 2 for method H-RBM
(Aa =5.0°). For the region-specific comparison of the local tissue structure and
cardiac characteristics in Fig. 5.5, 3 transmural and 5 apicobasal subregions
are defined, see Fig. 5.2 (a) and (b). In Fig. 5.1 (b), it can be observed that
for W-RBM, the apex regions as well as the outer and inner base regions show
Aca; > 10° which can be mainly justified with a globally constant longitudinal
axis for W-RBM compared to B-RBM and H-RBM. This observation can be
quantified in more detail with Fig. 5.5 (a) W-RBM — apicobasal subregions 1
and 5 (6.8°/13.3°) and Fig. 5.5 (b) W-RBM - transmural subregions 1 and 3
(8.3°/10.1°). It is worth noting that the characteristic transmural behaviour
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5 Influence of orthotropic tissue structure on cardiac function
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(a) B-RBM vs. H-RBM. (b) B-RBM vs. W-RBM.

Figure 5.1: (a)-(b) The plots show the direct comparison (difference in fibre
angle Aa? in (°), see Eq. (5.1)) among the methods B-RBM,
H-RBM and W-RBM. The colour bar limits have been set to
optimise the visibility of the local differences. Reprinted with
permission from [180]. Copyright (©) 2023 by J. Biomech.

of B-RBM, H-RBM and W-RBM, shown in Fig. 3.4 and discussed in [170],
can be also seen in the subject-specific LV. In Fig. 5.5 (a), the highest Aa;
between B-RBM and H-RBM is located in the transmural subregion 2 while
Aca; between B-RBM and W-RBM is the smallest close to the transmural
subregion 2 (blue concentric region at the base close to the middle layer in
Fig. 5.1 (b)). In general, it can be stated that even though we limited the
study to a small subset of RBMs (namely LDRBMs) and supposedly the
same orientation (« = £60°, 8 = +0°, Laplace equation-based transmural
interpolation), one can observe significant differences in specific ventricular
subregions w.r.t to the local myofibre orientation.

5.2.2 Comparison of the global and local cardiac characteristics

The electromechanical model with the tissue orientation obtained by B-RBM is
utilised to fit the subject-specific global characteristics, see patient experiment
(Exp.) in Tab. 5.2. The comparison of the global characteristics based on
Tab. 5.2 between the measurement and the simulation B-RBM (Exp./B-RBM,;
EF (%): 58.10/58.19, prmas (mmHg): 110.00/110.00, as (%): 19.15/18.14,
Viea (%): 19.43/21.99, ¢ (%): 29.57/27.15) shows that the measured global
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Do0<d<03
@os3<d<o0r

®or<d>10

(a) apicobasal subregions. (b) transmural subregions.

Figure 5.2: (a)-(b) For the comparison of the local fibre orientation and the local
cardiac characteristics, 3 transmural and 5 apicobasal subregions
are defined. Reprinted with permission from [180]. Copyright ©
2023 by J. Biomech.

characteristics are predicted with negligible deviations. Furthermore, the
measured and simulated end-diastolic as well as end-systolic geometries are
visualised and compared in Fig. 5.4 (yellow: simulation B-RBM; blue: mea-
sured) and underline the good agreement of the global cardiac characteristics
in Tab. 5.2.

Global cardiac characteristics The results for the electromechanical simula-
tion for B-RBM, H-RBM and W-RBM w.r.t. the global cardiac character-
istics are summarised in Tab. 5.2. The myocardial volume reduction V,.q
(21.99%; 21.83%; 22.15%; sgdeM = 0.16; sy/\i’i‘BM = 0.03) and developed peak
pressure pmae (110.00 mmHg; 109.67 mmHg; 104.91 mmHg; TRBM _ (07,

Sp‘mam

SXY;I(}EM = 0.20) seem to be rather insensitive to a change of the LDRBM. A
moderate influence of the LDRBM can be observed for the EF (58.19%; 58.11%;
54.48%; shr ™ = 0.03; spe ™M = 0.28). The apex shortening as (18.14%;
17.76%; 21.43%; SES'RBM = 0.45; SZ\;’RBM = 0.80) as well as the fractional
wall thickening t; (27.15%; 26.46%; 21.47%; si; 0" = 0.55; sy M = 0.92)
significantly differ when changing the LDRBM. In general, the global charac-
teristics of B-RBM and H-RBM are closer to each other compared to W-RBM
(reasonable based on the comparison of the local myofibre orientations), see
also Fig. 5.3 (a)-(c) for the PV-loops. Interestingly, by applying the sensitivity
marker in Eq. (5.4) to a similar study about the comparison of different
LDRBMs and their influence on different mechanical biomarkers in [171], a
comparable behaviour of the global characteristics could be observed with the
highest sensitivity for the apical shortening as and fractional wall thickening
ty, moderate influence on EF and a less sensitive developed peak pressure
Pmax, See Tab. 5.3
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5 Influence of orthotropic tissue structure on cardiac function

Table 5.2: Global cardiac characteristics (EF: ejection fraction; pmaz: peak

pressure; as: apical shortening; V,.q: volume reduction of the
myocardium; ts: fractional wall thickening) of the measured subject
(see first column Exp.) as well as for the simulations B-RBM,
H-RBM and W-RBM. Deviations of the global characteristics for H-
RBM and W-RBM from the reference method B-RBM are defined by
A{;:F, A{;mw, Ags, A{}Tﬁd, A{ . The columns sZRBM gpd sV-RBM
show the level of sensitivity of each global characteristic. In order
to improve the readability of the table, the sensitivity marker is
coloured as follows: 0.0-0.25: low (e), 0.25-0.50: moderate (®),

0.50-1.0; high (e).

Exp. B-RBM
EF (%) 58.10 58.19
Al (%) : -
DPmawz (mmHg) | 110.00 110.00
A7 e (0 - :
as (%) 19.15 18.14
Al (%) - -
Vrea (%) 19.43 21.99
A‘i/rﬁti (%) ~ -
ty (%) 29.57 27.15
Aif (%) - -

Table 5.3: Sensitivity marker s{"*PM and s¥"*BM based on Eq. (5.4) with

M7 = max{ALg, Agmam,Ais,A{f} to ensure the comparability
with the study in [59]. The sensitivity marker s5"RBM and s3-RBM
are computed based on Eq. (5.4) and the data in [59] (Table 7
(EFLv, Prv, LFS, WT)). The B-RBM method in Table 7 ([59]) is
chosen as the reference method for s?REM and sBFBM - Qyerall,
the sensitivity marker shows similar tendencies with regard to the
global characteristics.

SI;I—RBM SW—RBM SD—RBM SR—RBI%
EF (%)
Pmaz (MmHg)
s (%)
ty (%)
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Figure 5.3: (a)temporal evolution of the LV pressure (mmHg) over the cardiac
cycle for the method B-RBM, H-RBM and W-RBM. (b) temporal
evolution of the LV volume (mL) over the cardiac cycle for the
method B-RBM, H-RBM and W-RBM. (c) LV pressure-volume
loop for the method B-RBM, H-RBM and W-RBM. Reprinted
with permission from [180]. Copyright (©) 2023 by J. Biomech.
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Figure 5.4: (a) Comparison of the MRI- and FEM-based geometry in the
end-diastolic state. (b) Comparison of the MRI- and FEM-based
geometry in the end-systolic state. (c) Initial orientation of the
MRI- and FEM-based LV (yellow: simulation B-RBM; blue: MRI)
for the comparison of the geometries (geo.). Points BP (green) at
the base are defined in order to set the basic orientation of the
ventricle. The reference points RP (yellow) define the longitudinal
axis [ (blue) while the point SP (grey) defines the position of
the first cutting plane perpendicular to the longitudinal axis .
Reprinted with permission from [180]. Copyright © 2023 by J.
Biomech.
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5.2 Results

Local cardiac characteristics In Fig. 5.5 (c)—(f), the results for the local car-
diac characteristics (fibre stress Aaact and fibre strain A, , based on Eq. (5.2))
are depicted for the different aplcobasal and transmural subregions at the time
step of 300 ms corresponding to the end-systolic state in the cardiac cycle.

Firstly, it can be observed in Fig. 5.5 (c)—(f) that the local characteris-
tics are significantly influenced by B-RBM, H-RBM and W-RBM. The high-
est deviations in fibre stress and fibre strain for H-RBM and W-RBM are
Agact = 2.2% /A jace = 8.5% and A, , = 4.6% /A, = 22.7%. In general,

B- RBM and H- RBM show more similar characteristics, which correlates with
the results for the local fibre orientation.
Secondly, the difference in fibre strain A, ,, compared to the fibre stress

Ao.(lu‘lt’ is significantly higher for both methods (see e.g. sWRBM —1 00 in

€1,1
H-RBM

apicobasal subregion 1 and sa = 1.00 in transmural subreglon 1). Ad-

ditionally, the sensitivity markers SXVEF?M = 1.00 in apicobasal subregion 1
and s R?M = 1.00 in transmural subregion 1 show that the local charac-

teristic A¢, , is the most sensitive characteristic among all global and local
characteristics. Furthermore, it is worth noting that A, , and A opet are
still averaged over large subregions and smaller subregions will lead to even
larger deviations (e.g. for a small subregion (N, = 1000) of the apicobasal
subregion 1, the maximum for A} TPM = 80.42% /A PM = 16.86% and
AREPM = 25.01%/ ATLE™M = 5.97%).

Thlrdly7 it is visible in Flg 5.5 (c) and (e) that the differences for W-RBM
in fibre stress O’l,f and fibre strain €;,1 for the apicobasal subregions corre-
late with the results for the local fibre orientation in Fig. 5.5 (a). W-RBM
exhibits a significantly higher Ajac: of 8. 5% and 8.4% and A, , of 22.7% and

14.9% for the apicobasal subreglons 1 and 5 (base and apex). In contrast,
for the transmural subregions, Ajact and A, , exhibit the largest difference

in the transmural subregion 2 (seé Fig. 5.5 (d) and (f), Ajac =8.4% and

A, , = 16.1%), showing an opposite behaviour compared to Fig. 5.5 (b),
where the difference in fibre orientation is smallest in transmural subregion
2 (4.1%). A possible explanation for this could be the rapid change in fibre
angle « in the subregion 2 for W-RBM (see also Fig. 3.4 in Chapter 3). T
ensure that the findings are not a time step-specific behaviour, Ao.aclt and
A, ; are additionally plotted for different time frames in the cardiac cycle, see
Fig. 5.6. We evaluated the local characteristics for all integration points in
the time period of 250 ms to 350 ms. The local difference in the defined local
cardiac characteristics of fibre stress cf‘fﬁt and fibre strain €11 can be observed
independently of the chosen time frame.

Interestingly, similar observations have been made by [267] and [268]. In [267],
for different transverse or helix angle, they stated that the changes in fibre
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Figure 5.5: Comparison of the local fibre orientation, stress and strain for B-

RBM, H-RBM and W-RBM. The first and second column represent
the apicobasal and transmural subregions defined in Fig. 5.2 (a) and
(b), respectively. A single data point for a subregion is computed
by averaging the local difference at each integration point in the
considered subregion, see Eq. (5.2). The coloured indices are the
sensitivity marker for each subregions with: 0.0-0.25: low (e), 0.25-
0.50: moderate (®), 0.50-1.0; high (e). Reprinted with permission
from [180]. Copyright (© 2023 by J. Biomech.
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Figure 5.6: Comparison of the active fibre stress of5 and the strain in fibre
direction €;,; for the different approaches B-RBM, H-RBM and
W-RBM for ¢ = 235ms to ¢t = 330ms. In (a) the average of the local
difference for the active fibre stress Ajact are depicted (w.r.t. the

chosen reference method B-RBM), while in (b) the corresponding
average of the local deviation for the strain in fibre direction A, ;
is shown. A single data point in the plots is created by Eq. (5.2).
Reprinted with permission from [180]. Copyright (©) 2023 by J.
Biomech.

orientation hardly affect the pressure-volume relation of the ventricle, while the
local measures like active muscle fibre stress and sarcomere length significantly
vary. [268] concludes in the study about the effect of the fibre orientation
that the macroscopic measures like the pressure-volume loop, stroke volume
and ejection fraction are relatively insensitive to the varying fibre orientation.
Additionally, [268] expect that the fibre direction has a significant impact on
local mechanical quantities (e.g. stresses, and strains).

5.3 Summary

In the present study, three Laplace equation-based orthotropic tissue structure
models (B-RBM, H-RBM, W-RBM) for human heart simulations are compared.
The comparison is based on a subject-specific human LV geometry obtained via
MRI and a fully-coupled electromechanical model. We show that for the initial
fit of parameters, see Tab. 5.1, the electromechanical model is able to capture
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5 Influence of orthotropic tissue structure on cardiac function

all main characteristics of the measurement. Additionally, the geometrical
comparison between the MRI- and FEM-based geometry of the end-systolic
and end-diastolic state shows a satisfying agreement, see Fig. 5.4. The focus
of this study is on the method-specific local orthotropic tissue structure (fibre
orientation) as well as on important global (ejection fraction, peak pressure,
apex shortening, myocardial volume reduction, fractional wall thickening) and
local (active fibre stress, fibre strain) characteristics. The local fibre orientation
significantly differs for all methods, especially in the base and apex regions for
W-RBM. Despite the significant difference in the local myofibre orientation, the
global cardiac characteristics show a more diverse picture. While the myocar-
dial volume reduction and peak pressure show a rather insensitive behaviour
to a change of the LDRBM, the apical shortening as well as the fractional wall
thickening sensitively react. The EF shows moderate sensitivity. The local
cardiac characteristic, fibre stress and strain, seem to be highly sensitive and
in general more than the global characteristics.

The main findings underline the importance of the method-specific orthotropic
tissue structure. Even though we limited the study to a small subset of re-
lated tissue structure models (LDRBMs) and supposedly the same transmural
orientation (o = £60°, 8 = £0°, Laplace equation-based transmural interpola-
tion), one can observe significant differences w.r.t the local myofibre orientation.
Therefore, caution is advised when comparing studies with different orthotropic
tissue structure models, even if they supposedly have the same transmural
orientation. E.g. for the prediction of the myocardial volume reduction,
B-RBM, H-RBM and W-RBM predict similar results (i.e. comparison among
studies with different orthotropic tissue structure models B-RBM, H-RBM
and W-RBM feasible). For the prediction of e.g. local characteristics like fibre
stress or fibre strain, the results seem to be very sensitive w.r.t. the local
myofibre orientation (i.e. comparison among studies with different orthotropic
tissue structure models B-RBM, H-RBM and W-RBM are not feasible).
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6 Background — artificial muscle model

This chapter serves as a theoretical background for the subsequent Chapter 7
on the variational formulation and implementation of the dynamic viscoelastic
electromechanical shell model. In Section 6.1, the balance law of linear mo-
mentum as well as a reduced set of Maxwell’s equations are introduced. The
coupling between the mechanical and electrical field is described in Section 6.2.
In Section 6.3, local Euler-Lagrange equations are derived via the Lagrange-
d’Alembert principle for the two underlying variational principles, namely the
variational principle of virtual work and the three-field variational principle
of Hu-Washizu. The variational principle of Hu-Washizu is considered in this
work since displacement-based shell formulations are prone to e.g. locking,
especially shear and membrane locking.

6.1 Governing equations for a dielectric continuum

6.1.1 Balance of linear and angular momentum

Considering an arbitrary domain By € R3, the well-known local balance law of
linear momentum reads

Vx - peY + by = po:i in Bo, (61)
with the Dirichlet and Neumann boundary conditions

T=2=T on OuBo, (6.2)
P™.N=T on 9B, (6.3)

where P™%" is the first Piola-Kirchhoff stress tensor consisting of mechanical,
electrical and viscous parts. The body force vector is denoted by bg, po indicates
the mass density in the initial configuration and « is the position vector of an
arbitrary point in the domain By. The prescribed displacement/position vector
on 9,8y and surface traction on drBp is denoted by & and T, respectively.
The vector IN represents the unit outward normal on 97 By. The local balance
of angular momentum yields

F(Pm,e,V)T _ (Pm,e,V)FT. (64)
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6 Background — artificial muscle model

6.1.2 Maxwell's equations

Maxwell’s equations are a set of coupled PDEs to describe time-dependent
electromagnetic phenomena. For the subsequent variational formulation, a
reduced set of Maxwell’s equations is taken into account by neglecting magnetic
effects and free charges, see [198, 222, 269, 270, 271]. Considering the arbitrary
domain By € R3, the reduced set of Maxwell’s equations reads:

VX X Ee =0 in Bo, (65)
Vx-D=0 in By, (6.6)

with Dirichlet and Neumann boundary conditions

p=¢ on 9B, (6.7)
D-N=Q on 8B, (6.8)

where E¢ and D represent the electrical field and displacement, respectively.
The electric potential is described by ¢. The unit outward normal on dgBp is
given by N and Q are the charges per unit area on 0gBo. The definition of
the electric field E° follows as

e_ 09
B =% (6.9)

6.2 Constitutive laws

The coupling between the electrical and mechanical field can be described by
a potential energy density functional Q(F, E€), where Q(F, E) is additively
split and defined as

Q(F, E°) = Q™ (F) + Q" (F, E°) + Q°(E°), (6.10)

with Q™ (F), Q°"(F, E°) and Q°(E®) representing the mechanical, coupled
and electrical parts, respectively. Concerning Eq. (6.1) and Eq. (6.6), the first
Piola-Kirchhoff stress tensor P™° and the electric displacement D are defined
as

ONF,E°)  0Q™  90™

P = e = e T (6.11)
_O0OF,E°) 997 0™
D=="%m = o 0B (612)
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6.3 Variational principles for 3D continuum electromechanics

The potential energy density Q(F, E®) is a functional of the deformation
gradient F and the electric field E€ and reads (e.g., [270, 222, 209]),

Q(F,E°) = g([c —3) — plnJ + g(an)2 + c1E°-E°+c2C: (E°® E®)
Neo-Hookean model non-linear coupling
- %eOJC*1 : (E° ® E°), (6.13)

free space term in vacuum

with ¢ and A being the Lamé parameters. The Lamé parameters are related to
the bulk modulus xk by Kk = A+ %,u. The trace of the right Cauchy-Green tensor
C is given by Ic and the Jacobian J is defined by J = det(F'). The vacuum
permittivity is denoted by €o, while ¢1 and cz are electrical material parameters,
where co affects the coupling between the electrical and mechanical field. The
strain energy is decomposed into a purely mechanical elastic part (Neo-Hookean
model (see [225]), the non-linear coupling part between C and E€ and the
free space term in vacuum. The last two terms in Eq. (6.13) express the
electromechanical coupling. It is worth noting that the Neo-Hookean material
model is, in general, not suitable for representing very high strains of dielectric
materials (see [271, 272]). The Yeoh, Mooney-Rivlin and Ogden material
models seem to be more appropriate [273, 274, 275, 276, 277, 278]. In this
work, the Neo-Hookean material model is used since we stay in the regime of
moderate strains for the subsequent numerical examples employed.
To account for viscosity in the dielectric material, viscous stress PV is defined
as

PY(F,F) = %Jn (F*T-FT-F*T+F.C*1), (6.14)

with the damping parameter 7, the right Cauchy-Green tensor C and the time
derivative of the deformation gradient F = 2F = 92 see e.g. the Kelvin-Voigt

bt~ X
model in [279].

6.3 Variational principles for 3D continuum electromechanics

In the following section, the local Euler-Lagrange equations for the 3D con-
tinuum electromechanics are derived from the Lagrange-d’Alembert principle.
The local Euler-Lagrange equations are derived for the two underlying vari-
ational principles, namely the variational principle of virtual work and the
three-field principle of Hu-Washizu.

Principle of virtual work The Lagrange-d’Alembert principle reads

T
6S+/ SWt dt =0 Yoz, (6.15)
0
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6 Background — artificial muscle model

where all variations vanish on the boundary of the space-time domain. The pa-
rameter S represents the action, W*** the work of the external non-conservative
forces and T the total time interval. The variations at the endpoints dz(0) and
dx(T) are fixed in time. The work W** of the external non-conservative forces
includes the external surface traction, external body forces, external surface
charges and viscous stresses (in the event of viscous material behaviour). The
action S is defined as the space-time integral over the Lagrangian density £

S(z,p) = /OT ; L(z,F,E°) dV dt, (6.16)

and describes the dynamic behaviour of the electromechanical system. The
Lagrangian density £ reads

L(¢,F,E°) = T (&) — Q(F, E°), (6.17)

with the spatial position vector x, its time derivative & and the strain energy
density functional Q(F, E€) being a coupled function of the deformation gra-
dient F and the electric field E°. The kinetic energy density 7 (&) is given
by

T(&) = %podz s (6.18)

By integrating the kinetic energy density T (&) over the domain By, the kinetic
energy T follows as

T={ T(@)av. (6.19)
Bo

Similarly, the potential energy II is obtained by integration of the strain energy
density functional Q(F, E€) over the computational domain By

m= / Q(F, E°) dV. (6.20)
Bo
Therefore, the variation of the action S is given by the variation of the kinetic

energy density 7 (&) and the variation of the strain energy density functional
Q(F, E°)

T
08 = / / (07T —6Q2) dV dt, (6.21)
0 Bo
where 67 () and 6Q(F, E°) read
0T = po$ . 5$,
0N =0rQ : OF + 0gQ - 6E°, (6.22)
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6.3 Variational principles for 3D continuum electromechanics

with JF = % and 0E° = —%5—)? and X being the position vector in the
reference configuration. Applying integration by parts, zero variations at the

endpoints and using the divergence theorem lead to the variation of the action
T
0S = / / [5w - (—pod + Vx - 0rQ) + dp(—Vx '(9EeQ)} dv
0 Bo

+/ [590. (,aFQ.NH(sd)(aEEQ.N)] dA} dt, (6.23)
9B

where dx and d¢ represent the variation of the position vector x and the electric
potential ¢, respectively. The external non-conservative work (resulting from
body force, surface traction, surface charge, and viscous force) is given by

Wm:/ cc-bodV+/ sc~TdA—/ -0 dA
Bo a1 Bo 9 Bo

f/ F : P'dV, (6.24)
Bo

where the body force by is acting in the domain By and T is the prescribed
surface traction on the boundary drBy in the reference configuration. The
surface charge is represented by Q and PV is the viscous stress contribution
in terms of the first Piola-Kirchhoff stress tensor. By taking variations of
the external non-conservative work (non-conservative quantities are treated
fixed during variation), integration by parts, using the divergence and the
fundamental lemma of the calculus of variations, the Lagrange-d’Alembert
principle yields the local Euler-Lagrange equations

balance eq. Vx - (P™° +PY) 4+ by = po in B, (6.25)
balance eq. Vx-D=0 in By, (6.26)
static BC (P™4+P').N=T on drBy, (6.27)
static BC D -N=Q on 0gBo. (6.28)

In addition, the geometric boundar}f condition £ = & on 0,8 and the electric
potential boundary condition ¢ = ¢ on 948y have to be fulfilled.

Principle of Hu-Washizu — mechanical For the sake of simplicity, the purely
elastodynamic problem is described first. We refer to Eq. (6.21) for the
variation of the action

T T
0S = / 0L dV dt = / / (6T —69Q) dV dt. (6.29)
0 Bo 0 Bo
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6 Background — artificial muscle model

Slightly abusing the previous notation of II, £ and 2, the well-known Hu-
Washizu three-field potential energy functional II is given as (see [280, 281]),

Il = / Q(E)+S: (E* —E) dV, (6.30)
Bo

where II is not exclusively a function of the displacement uw = & — X or the
deformation gradient F', but additionally depends on the assumed stress S and
assumed strain E. The strain energy density functional Q(E) is a function
of the assumed strain E, while E® = E(x) represents the Green-Lagrangian
strain based on the displacement field . The assumed strain E can be defined
as E = E® + E, where E represents the independent assumed strain.

The action S including the three independent fields x, E and S becomes

L(&E,S)dV = [ T(x)— [Q(E) +S: (B° - E)] av. (6.31)

Bo Bo

The external non-conservative work (resulting from body force, surface traction
and viscous force) reads

W”t:/ x - bo dV+/ x-T dA
Bo arBoy
—/ F : PV dV, (6.32)
Bo
where the body force is denoted byA bo and acts in the domain By. The
prescribed traction is represented by T' on the boundary dro in the reference

configuration. The viscous stress contribution is denoted by P".
Hence, the Lagrange-d’Alembert principle from Eq. (6.15) can be written as

T
58 + / SWet qt =
0

T T
/ / (52 - (~po) - N s)av+ [ bz-boav
0 Bo oz Bo

SE(x)

—/ oF : PVdV+/ bx-T dA

Bo orBo

09

— [ (B (&2 -8))av

[, (o (Gg )
—/ (55  (E” —E)) dV} dt=0 VY éz,0E,sS, (6.33)

Bo
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6.3 Variational principles for 3D continuum electromechanics

where all variations vanish on the boundary of the space-time domain. The
variations in Eq. (6.33) can be expressed as dE(z) : S = 0FT-F : S=
F'.6F : S=6F : F-S=6F : P and 6F = 2. Integration by parts,
using the divergence theorem and the fundamental lemma of the calculus of

variations yields the local Euler-Lagrange equations

balance eq. Vx - (F-S+P") + by = pod& in By, (6.34)
compatibility eq. E*-E=0 in By, (6.35)

N o0 .
constitutive eq. Eoh S=0 in By, (6.36)
static BC (F-S+P').N=T on 9,Bo. (6.37)

In addition, the geometric boundary condition * = & on 9,8y has to be
fulfilled.

Principle of Hu-Washizu — electromechanical 1In this section, the Hu-Washizu
formulation for the mechanical shell is extended by the electric field. Analogous
to the mechanical assumed quantities for strain and stress (E, S), we introduce
the assumed quantities for the electrical field and electric displacement as Ee
and D, respectively. The Hu-Washizu type potential energy functional II is
then given by

= [ Q(EE¢)+8™°: (E™°—E™*) dV, (6.38)
Bo

with E™® = [E, E¢]” and S""° =[S, —D]” being functions of the assumed
mechanical and electrical quantities. The electric and electromechanical cou-
pling energy is covered by the potential energy density functional Q(E, E¢),
which depends not solely on the assumed strain E but additionally on the
assumed electric field E¢. The action for the four independent fields u, E, S
and ¢ becomes

L(#,¢,E,S,Ee,D)dV = [ T(x) (6.39)
Bo Bo
- [Q(E,Ee) +8™ L (B™ — E’"’E)] dv. (6.40)
Similar to the displacement formulation, the external non-conservative work

(resulting from body force, surface traction, surface charge and viscous force;
no electric charge density) reads

W”t:/ mvbodV+/ z T dA — -0 dA
Bo o1 Bo 9q Bo

—/ F : P'dV, (6.41)
Bo
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6 Background — artificial muscle model

Hence, the Lagrange-d’Alembert principle with the external non-conservative

work reads

T
58 + / SWet dt =
0

T x
/ / (5x-(fp0:}é)fa£-5m:8)d‘/+ 5z - by dV
0 Bo N 8(1) , Bo

. 6F:PVdV+/

Bo

SE(x)

orBo

Sz-T dA

7/30 (6EE~D) dvf/aQBO&deA

-, (e Gg -

—/B (6S:(E”—

8)av- [ (o5 (2 +D
Bo

oOFE

)) av

E)) dV—/ (6D-(Ee —Ee)) dV} dt =0

V 5z, 8¢, 0E, S, B¢, D

(6.42)

where all variations vanish on the boundary of the space-time domain. The
additional terms in Eq. (6.42) come from the variation of the electric potential
¢ and incorporation of the surface charges Q Integration by parts, using the
divergence theorem and the fundamental lemma of the calculus of variations,
yields the local Euler-Lagrange equations

balance eq.

compatibility eq.
constitutive eq.

static BC
balance eq.

compatibility eq.
constitutive eq.

static BC

Vx~(F-S+PV)+b0:pofii

E* —E =
o0

9B o=

(F-S+P')-N=T

Vx-(D)=0
E°—E°=0
o0
Z—~ 4+D=0
0B ©

D - N=-0

on

Bo, (6.43)
Bo, (6.44)
Bo, (6.45)
9,Bo, (6.46)
Bo, (6.47)
Bo, (6.48)
Bo, (6.49)
dpBo. (6.50)

In addition, the geometric boundar}j condition & = & on 9, B and the electric
potential boundary condition ¢ = ¢ on 9480 have to be fulfilled.
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7 Artificial muscle model — dynamic viscoelastic
electromechanical shell

In this chapter, the shell formulation is derived in the continuous setting via
the Lagrange-d’Alembert principle. In Section 7.1, the formulation for the
variational principle of virtual work, presented in Section 6.3 for the 3D con-
tinuum case, is introduced. In Section 7.2, important details about the spatial
and temporal discretisation are summarised. Numerical examples, including
different geometries (rectangular, cylindrical, spherical) and deformation states
(contraction, bending), are illustrated and discussed in Section 7.3. The chapter
concludes with a brief summary of the implementation, numerical results and
prospects in Section 7.4. In the following chapter, the summation convention
for repeated indices with Roman numerals and Greek letters is used. Indices
based on Roman numerals take on values 1,2,3. Indices based on Greek letters
take on values 1,2.

7.1 Variational shell formulation in the continuous setting —
virtual work

7.1.1 Mechanical and electrical kinematics

The placement of any material point « in the domain is based on the classical
Reissner-Mindlin kinematic assumption [282, 283] with an inextensible director
vector. The placement of a material point reads, see e.g. [284, 221],

w(£17£27£7t) :Lp(£17€27t)+£d(£17§2’t)7 (7'1)

with the placement (¢',£2,t) of the shell mid-surface ¢ in the deformed
configuration, where the mid-surface is defined as ¢ := {(£',£2,€) € Bo | € = 0}.
The parameters ¢!, £2 denote the curvi-linear coordinates of the mid-surface, &
is the thickness coordinate and d the director pointing in the thickness direction,
see Fig. 7.1. The current time is denoted by ¢. The thickness coordinates along
the director d is given by &3 = ¢ € [—%, %], where h represents the thickness of
the shell. The director d(£',£2,¢ = 0) in the initial configuration is defined as a
unit vector perpendicular to the mid surface. Transverse shearing is accounted
for by allowing that the director d(¢',£2,t) in the deformed configuration is
not necessarily perpendicular to the mid-surface. The director d is assumed to
be inextensible, i.e. | d(¢',£%,t) |=1 in the complete spatial domain and at

all times.
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7 Artificial muscle model — dynamic viscoelastic electromechanical shell

Figure 7.1: Configuration of the spatially discretised shell with curvi-linear
coordinates &', &2 and &, the director d and the inertial basis
Ei=[1 0 0 ,E2=[0 1 07 ,E;s=[0 0 1]7 (left). Visu-
alisation of a four-node (1, 2, 3, 4) element with the isoparametric
coordinates 61, d2 (right).

Mechanical kinematics

The membrane strains €., bending strains x.s and transverse shear strains
Yo with a, 8 = 1,2 are defined as follows, see e.g. [284, 220],

1

Aap = P.a P56, €ap = 5laas — aos), (7.2)
1

bap =P -dptps da, Kap = 5 [bas — bas), (7.3)

Ca = P,o-d, Yo = Co — €3, (7.4)

where (-) and (-)° represent the current and initial configuration, respectively.
The notation (),o and (-),s denotes the derivative w.r.t. the first and second
curvi-linear coordinates, e.g. ¢ o = (%ﬁ.

Following [285], we write the components of the Green-Lagrangian strain tensor
E = %(C — 1) in vector notation as F = [E11, EQQ, E33, 2E12, 2E13, 2E23]. The
relation between the Green-Lagrangian strain tensor FE and the independent
shell strains € = [e11, €22, 2€12, K11, K22, 2K12, V1, V2] is given by

E=A ¢ (7.5)
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7.1 Variational shell formulation in the continuous setting — virtual work

with
100 & 0 0 0 0
01 0 0 ¢ 0 00
000 0 0 0 00
A:00100§300 (7.6)
000 0 0 0 10
000 0 0 0 01

Electrical kinematics

The electric potential ¢ is introduced as an additional degree of freedom (DoF)
at any material point inside the domain

P(€",€2,6%) = dm (€', €%) + Eal€", €7, (7.7)

where ¢m (€1, €2) denotes the electric potential on the mid-surface and a(¢*, £2)
is the incremental parameter of the electric potential in thickness direction
d. Tt is worth noting that Eq. (7.7) assumes a linear change of the electric
potential along £. A similar approach has been used for an electromechanically
coupled beam formulation, see [222]. The electric field E° is the gradient of
the electric potential ¢ defined in Eq. (7.7) and follows as

6_7% I
E° = agrE
_ a¢m 38& 1 8¢m 38(1 9 - s
_(851 +¢ a?)E +(a§2 +¢ @)E +a&, B, (7.8)

with the reciprocal basis E! = E;, where the superscript and subscript indices
refer to the covariant and contravariant vectors, respectively.

7.1.2 Lagrange-d’Alembert principle for the shell

In the following, the variational formulation in a continuous setting in terms
of the defined mechanical and electrical quantities is derived via the Lagrange-
d’Alembert principle. Finally, the governing equations in terms of the shell
quantities are given.

The variation of action 4.5 repeated from Eq. (6.23) is given as

08 = /OT { /B0 [533 < (—=po + Vx - 0rQd) + 0(—Vx (9EQ)] av

+/ (62 (~0r Q- N) + 66(062 - N)] dA} dt.
9By
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7 Artificial muscle model — dynamic viscoelastic electromechanical shell

To express Eq. (6.23) in terms of the shell quantities defined in Section 7.1.1,
the volume integral in Eq. (6.23) is split into the surface integral over the mid
surface ¢ and the line integral over the shell thickness h. Similar to [284] for
the purely mechanical shell formulation, the variation of the action for the
electromechanically coupled shell reads

55_/0T{/</g [6w~(—po:%+vx~P)+5¢(—VX~D)} d¢ dA

h
2

+/C [(&c -(-P-N)) ijg + (6¢(D - N)) |§f%] dA} dt,  (7.9)

where the quantities dx, &, Vx - P and Vx - D are expressed in terms of the
shell kinematics. The variation and time derivatives of the position field x, @
and & are given by

r=@p+r

ox=0p+dnxr

T=pt+wxr

E=@F+wxr+wx(wxr)
with the position vector r = & — ¢ = £d along the thickness direction, w being
the spatial angular velocity and én representing a virtual rotation. Defining a

traction t = [t1, t2,t], we can write the forces f* and torques m*
h h
k 2 k 2
f :/ ty dE, m :/ r Xty dE. (7.14)
h h
-2 -2

Thus, the divergence terms in Eq. (7.9) can be formulated as follows

5 5 ot,  Ots Ot
. /g(%l+652+8§d§

aft  af? 5 ot
:i+i+/ia—€d§, (7.15)
-2

f* n

ke f

h
2

/ rxVx P df = +8m2+/gr><(8t>d£
n x T ogt o2 ) o€
2 _ 2

- e

mt mn

x 1+ % x f2. (7.16)

O
+87§1

@ X fE
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7.1 Variational shell formulation in the continuous setting — virtual work

By applying the generalized Stokes’ theorem
/ Vx -Fd™Vv = / F-vd" Vg, (7.17)
v s

where d™ and d"~V denote the dimension with the boundary S = 8V and v
being the outer normal, we obtain for (n = 1)

—h
(P-N) "2, /P N d?s = /vx PdVV = / e T

5:,,
(7.18)
and
/rx( )d Vs = /rxvx PdVv = / d§ m"
S
(7.19)

The definition of the electric displacement vector D in terms of the shell
kinematics is analogous to the definition to the Piola-Kirchhoff stress tensor.
We define the components of the electric displacement

h h

& = |7 Dy de, d=[° D e, (7.20)
h h

-2 -2

with D = [D1, D2, D] and d° = [d*,d?,d]. The divergence of the electric
displacement D is expressed in terms of the shell quantities as

h

D 0Ds
%vx D d¢ = /7 oo tae t 5 D e (7.21)

_odt ad® od
= 22
~ St ot / 5 (7.22)

N——— \W_,
d,kk dn
with
/D Nd9s = /vx DdVv = / de =d. (7.23)
h
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7 Artificial muscle model — dynamic viscoelastic electromechanical shell

Using Eq. (7.10)—(7.23), the variation of the action in Eq. (7.9) reads

55_/0T{/<[6¢4(Ap¢+f,}2+f")

+6n-(—Ipw+mf"k+m"+sa,kka)+5¢(—dn—dfck)] dA}dt

[ oo () o (<) so()]an b oz

¢

with A, being the constant nominal surface density and I, the constant nominal
rotational inertia of the shell, see e.g. [286]. It is worth noting that the forces
f™ and torques m" in the first surface integral of Eq. (7.24) come from the
divergence term of the action in Eq. (7.9). Due to opposite signs of f™ and
m"™ in the second surface integral of Eq. (7.24), the terms f™ and m” vanish.
By considering the Neumann boundary conditions in Eq. (6.3) and Eq. (6.8)
and the body force in Eq. (6.1), the external work W** in terms of the shell
can be expressed as

SWet = [ Sz pob dV + Sx-T dA + 5¢-Q dA
Bo By 9Bo
:/5go-fdA+/5go~idA+/§n~7ﬁdA (7.25)
§ S S
+/5n-+dA+/6¢-QdA, (7.26)
S ¢

where the prescribed body force, traction, torque, and electric charge are given
by

~ N ~ EZE
f=/ pob de, t=T|_%,,
_h 2
2
h
B o s [ 68
m—/ T X pob d§, T—’“X[T| h:|a
- =3
~ e=h
i=Ql_%,. (7.27)
- 2
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7.2 Spatial and temporal discretisation

Inserting Eq. (7.24) and Eq. (7.25) in Eq. (6.15) finally leads to the Lagrange-
d’Alembert principle for the shell

T
35S + / SWetdt =
0
T & . R
/ {/6¢-(—Ap¢+f,k+f+t)
0 ¢
o (= Lo+ mby + @ x b+ 7)

+ 5¢( —df 4 q) dA } dt=0 ¥ 3p,on,dp, (7.28)

where all variations vanish on the boundary of the space-time domain. The
requirement of stationarity in Eq. (7.28) leads to

Fhtf+i=A4,8, (7.29)
mh + o x 4 m4 7 = Law, (7.30)
s, — =0, (7.31)

where Eq. (7.29)—(7.31) represent the balance of linear momentum, the balance
of angular momentum and Maxwell’s equation for the shell, respectively.

7.2 Spatial and temporal discretisation

In the following, the space and time discretisation of the shell formulation
based on Section 7.1 are introduced.

7.2.1 Finite element discretisation

The shell mid-surface ( is spatially discretised into quadrilateral finite elements
with e = 1,...,n¢ and n.; representing the total number of elements in the
domain, see Fig. 7.1. Based on the isoparametric concept, the coordinates 5,
director df and the electric potential ¢§ of the i-th node in the element e are
interpolated via bi-linear shape functions N;(d1,d2)

4
@6(51, 52,t) = ZNi(él, 52)(,0?@), (732)
i=1
d® (61, 82,1) ZN (61,82)dS (t), (7.33)
¢°(61, 82, 1) ZN (61,82) 5 (t). (7.34)
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7 Artificial muscle model — dynamic viscoelastic electromechanical shell

The bi-linear shape functions NN, are given by
1
N, €% = 71+ P1i01) (1 + W2 :d2), (7.35)

with 61,02 € [0,1], ¥1; € {-1,1,1,-1} and Wy; € {-1,—1,1,1}, see e.g.
[287]. The derivatives of the shape functions N; w.r.t. the isoparametric
coordinates §1 and d» are defined as

an, 15 2 aNa  oNg  oN,
Noww =S| = |8 & & &l (@9
o 062 062 o2 9d2

Thus, the derivatives of the nodal coordinates ¢;, the director d; and the
electric potential ¢; w.r.t. the isoparametric coordinates d; and d2 read

4 4 4
®%50 =D Nis,#5, ds, = > Nis.ds, 05, =Y Nis.d5. (7.37)
i=1 =1 i=1

The Jacobian J and the derivative of the shape functions with respect to the
curvi-linear coordinates £; and &2 are given as

J=

213 9E:
§ % ’ [Ni,sl} _ gt |:Ni,61:| ' (7.38)
3oy Bbg Ni,§2 Ni,62

Consequently, the derivatives of the nodal coordinates ¢;, the director d; and
the electric potential ¢; w.r.t. curvi-linear coordinates £; and &> follow as

4 4 4
Pen =D Nieo#i,  de, =Y Nigodi, 0%, =D Nig ¢ (7.39)
i=1 i=1 i=1

For all geometries (rectangular, cylindrical, spherical) in the subsequent nu-
merical examples in Section 7.3, a curvi-linear coordinate system is defined. In
the case of the rectangular geometry, the Cartesian coordinates just coincide
with the curvi-linear coordinates £; and £»2. For the cylindrical and spherical
geometry, a polar and spherical coordinate system is chosen, respectively. The
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7.2 Spatial and temporal discretisation

approximated element shell strains defined in Eq. (7.2)—(7.4) are given by

re 1| 310%, @l — @5 el ]
€5 3% ¢l — 0 %]

2¢f5 Pler  Plen — P 1

e | F ] Ple, die, — 7 - d] (7.40)

K52 P, de, — 9% - d)

2K12 90?&1 : 7852 + S0?52 ’ dvefl - 90,55(1) ’ d,eég - ‘Pfg’g ’ dz?
g Qe d—p - d

Lzl | P, d— 9 d |

7.2.2 Variational time integration

By modelling the dynamic, viscoelastic electromechanical problem based on
Lagrangian mechanics, the structure-preserving time integration can be used
to ensure a good long-term energy behaviour and avoid numerical damping or
artificial energy gain (e.g. [288, 289, 290].)

For a constrained non-conservative system, the Lagrange-d’Alembert principle
is given as, see also [288],

5 / L(g.d) — " (q) - Al dt + / F) b dt =0, (7.41)

where q(t) contains all spatially discrete configuration variables at time ¢
and ¢(t) are the corresponding time derivatives. The last term in Eq. (7.41)
represents the variation of the work of non-conservative contributions §W " (¢)
with sW*(¢) = £°**(¢) - 4q, also known as non-conservative virtual work. The
vector f°“!(t) contains the non-conservative generalised forces that are treated
fixed during variation. In the case of the electromechanical shell, the discrete
configuration variable g;(t) = [p:, d;, cZ)i]T with ¢ = [dm,i, i), i=1,...,mp
and n, is the total number of discrete points. Thus, the configuration vector
q(t) € R™ with ny = 8n, reads

a(t) = : . (7.42)
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7 Artificial muscle model — dynamic viscoelastic electromechanical shell

L(q, q) represents the Lagrangian and the argument in the first integral is
referred to as augmented Lagrangian f/(q, q,\) = L(q,q)—g(q)-\, g represents
holonomic constraints, A € R"¢ is the Lagrangian multiplier, where n. is the
total number of constraints. The Lagrange multiplier A specifies the forces
required to enforce the holonomic constraints defined in Eq. (7.43). Thus, the
remaining number of degrees of freedom are given by ngoy = nq — nc. The
holonomic constraints are defined as, see also [291],

g(g)=[:d"-d-1)] =0, (7.43)

which represents the kinematic assumption of an inextensible director d. The
continuous Lagrangian L(q, q) in terms of the configuration q is defined as the
difference between the kinetic energy 7'(¢) and the internal potential energy
II(q)

L(g,q) = T(q) — T(q). (7.44)
The kinetic energy for the shell is defined as (see {220, 292]),
. 1 ) :
7@ = 5 [VAnlgl + Duld) a4, (7.45)

Following [220], the consistent mass matrix for the mechanical part is given by

5 [MYT 0
i » .
o= [T 0], a0
where I is the 3 x 3 identity matrix, 0 is a 3 X 3 zero matrix and
MY = /C Apy NiN; dA, (7.47)
MY = /< I, NiN; dA. (7.48)

For the electromechanical case, the matrix M¥ is extended by two additional
DoFs w.r.t. the electrical field

o [MYI 0 0322
M7= o MYT 0340 - (7.49)
0223 02:3 0242

Since the kinetic energy in Eq. (7.45) is assumed to be independent of the
electric field, the defined mass matrix in Eq. (7.49) is singular. For the energy
evaluation (Hamiltonian energy H,4 needs the inverse of the mass matrix) and
system initialisation, a non-singular reduced mass matrix is needed. More
details about consistent initial conditions (gn—1 does not exist at ¢ = 0) and
consistent energy evaluation can be found e.g. in [271, 222].
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7.2 Spatial and temporal discretisation

Conservative problems The action integral is discretised with equidistant time
nodes t, within the time interval [0, 7] with n = 0,1, ..., n+ and n; representing
the total number of time points. The time discrete action integral reads

S@=3" / " L, d) dt. (7.50)

n=0 tn

The configuration g and velocity g are approximated via finite differences and
the midpoint rule, respectively,

g~ 7qn+lAt_ q"7 q=~ 711"“;_ q", (7.51)

with At = t,41 — t,. Thus, the discrete Lagrangian L, reads

tn+1 n + n n - n
/ L(q,4) dt ~ La(gn, qns1) = At L(q e i N g ) (7.52)
t

The variation of the discrete action is given by

ng—1
0Sa = Z 6Ld(qn7qn+1)
n=1

ne—1

_ i /twl |:8Ld(qn7qn+1) 4 OLa(an-1,0n)
. aqn aqn

6qn =0 Y 6qn,
n=1 n

(7.53)

with the variation of the configuration g equals zero at the time boundaries,
i.e. 6go = dg@n, = 0. The well-known discrete Euler-Lagrange equations can be
obtained by considering the fundamental lemma of the calculus of variations
(term in Eq. (7.53) has to be zero for arbitrary variations)

OL4(qn, @nr1) n OLi(qn-1,qn)
aqn 8q7b

=0, (7.54)

for n =1,...,nt — 1. The discrete Legendre transform is applied to initialise
the system at to. In Eq. (7.54), the unknown configuration of ¢g,—1 needs to
be known to compute qi. To circumvent the computation of g,,—1, the discrete
momentum obtained from the Legendre transform is initialised with an initial
momentum p(0) = po which leads to

_ 0La(qo0,q1)

: 7.55
a0 (7.55)

Do =

Consequently, with given go and po, the configuration g; can be computed.
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7 Artificial muscle model — dynamic viscoelastic electromechanical shell

Constrained problems Including the constraints in the action integral S leads
to

ne—1 tnt1 - nt—1 tn41
sen=Y [ Ll@ana=> [ Lad) - g@-Ad
n=1 “tn n=1 Ytn

(7.56)

The Lagrange multiplier term in Eq. (7.56) can be formulated in the discrete
setting as (see [271]),

tp41
/ 9(a) - A dt = v9(qn, @nt1, Ans Ant) (7.57)
t

n

= At (B.9(@) - A+ (1= 8) g(@ni1) - Aut1),  (7.58)

which forms an affine combination with g € [0,1] and A, being the time
discrete Lagrange multiplier at ¢,, approximating A(¢,). The variation of the
discrete action is given as

neg—1

0Sa = Z (6Ld(qna Gnt1) — 079(@n; Gnt1, An, )‘n+1)) =0 YV 0qn, 6 An,

n=1
(7.59)
with the variation of the configuration g and Lagrange multiplier A equals
to zero at the time boundaries, i.e. g0 = dqn, = 0, Ao = 0, = 0. The
well-known constrained discrete Euler-Lagrange equations can be obtained by
considering the fundamental lemma of the calculus of variations (term in Eq.
(7.59) has to be zero for arbitrary variations),

OLa(qn, gnt1) | OLa(gn-1,Gn) _ ~7/ \ y _
. n o GJ(gn)-An =0, (7.60)
9(gn+1) =0, (7.61)

where Gy(g,) = At 99(a»)/aq,, is the discrete constraint Jacobian.

Constrained and non-conservative problems Non-conservative contributions,
e.g. viscoelastic effects, friction and external loads in the dynamic system, are
considered as a change of energy in the system due to work by external forces
and can be taken into account via the Lagrange-d’Alembert principle from
Eq. (7.41). The variation of the non-conservative contributions W* reads

ng—1

tp41
W a £ = > [ e sq an (7.62)
n=1 Ytn
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7.2 Spatial and temporal discretisation

and contains non-conservative generalised forces £°*(¢) which are treated as
fixed during variation. The discrete non-conservative contribution §W$** is
given as (midpoint quadrature rule)

2xt+fext 6Qn+6Qn+1
2 2

tn41
~~ / F(t) - bq dt,
t

n

6WdeXt (qna qn+17 f’reLXt7 .f:L)fktl) = At (763)

and f2** being the time discrete generalised external force at t,, approximat-
ing f(tn).

The discrete Lagrange-d’Alembert principle for constrained systems with non-
conservative contributions follows as

nt

Z (5Ld(qn7 Qn+1) — 0y (Qn, qni1, An, )\n+1)

n=1

W (@ G, £ F)) =0V Oqu0An, (T.64)

with the variation of the configuration g and Lagrange multiplier A equals to
zero at the time boundaries, i.e. go = dgn, = 0, Ao = d\,, = 0. With

oo _ At £ S T ol
n 2 2 b n 2 2 b *
the constrained discrete Euler-Lagrange equations can be written as

aLd(un Qn+1) + aLd(qnfh Qn)

_ T extf ext+ _

g(qn+1) = 0. (7.67)

In case of a dependency of f** on the configuration g and its time derivative
¢, which is the case e.g. for the viscoelastic contribution given in Eq. (6.14),

WY = PY:F dV. (7.68)
Bo

. WY oW* OF / / v
= = dv = P d dA, 7.69
7 =% =), oF g : (7.69)

ext

the external force f°*" is approximated by

— At qn dn+1 gn+1 qn)
ext ext
== 7.70
" > I ( 2 At ’ (7.70)
At gn—1 + dn 4n — qnfl)
ext+ ext
= — . .71
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7 Artificial muscle model — dynamic viscoelastic electromechanical shell

The tangent matrix w.r.t. the unknown configuration g,+1 € R™? and unknown
Lagrange multipliers A,, € R™¢ reads

aREL’I(qn—la qn,qn+1, ’\n) ORFL! (Qn—h qn,qn+1, /\n)

8qn+1 8>\n
K= , (7.72)
8RELY2(qn717 dn,dn+1, )‘n) ORPH? (qn,l, dn,dn+1, }‘n)
0qn+1 0An

where RPL°Y and RPL2 represent the residual vectors of the Euler-Lagrange
equations defined in Eq. (7.66) and Eq. (7.67), respectively. In this work, the
residual vectors RPE!, RFL2 and the tangent matrix K are derived by using
the automatic differentiation tool CasADi, see [293]. The nonlinear system of
equations, with given configurations q,—1 and g, is solved for q,+1 via the
Newton-Raphson scheme.
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7.3 Numerical examples

7.3 Numerical examples

The numerical examples presented in this work illustrate the capabilities
of the dynamic viscoelastic electromechanical shell model. The structure-
preserving time integration ensures good long-term energy behaviour and thus
prevents both numerical dissipation and artificial energy gain. The numerical
examples comprise different geometries (rectangular, cylindrical, spherical) and
deformation states (contraction, bending). The parameters for the dielectric
material model from Eq. (6.13) are shown in Tab. 7.1 and originate from the
work of [270].

Table 7.1: Parameter set for the dielectric material model from Eq. (6.13).
The parameter X is computed via A = k — 2u/3, where the bulk
modulus « is set to 10 MPa.

parameter P A 17 €0 c1 c2
unit g/mm® MPa MPa C/Vm N/VZ  N/V?
value 1 6.66 5.0 8.85410~ 12 10 6

7.3.1 Contraction

Rectangular geometry

In the following, we consider a rectangular geometry with the dimension
1.0 mm x 1.0 mm and thickness h = 0.04 mm lying in the (x,y)-plane. For
any node with z = 0 mm, all mechanical DoFs are fixed and the electric
potential ¢, is set to 0 V. For all nodes with = 1.0 mm, an electric potential
¢m > 0V is applied. The difference in the electric potential ¢, for the nodes
with z = 1.0 mm compared to the nodes with £ = 0 mm is denoted as Ag.
The second electric DoF « (defined in Eq. (7.7)) is set to 0 V/mm in the whole
computational domain. The electric potential ¢ is therefore constant along
the thickness direction. The total simulation time is 10 ms with a time step
At =2-10"2 ms. Initially, the viscous damping parameter is n = 0.003.

In Fig. 7.2 (a), the contraction for A¢ = 0.8 V is visualised at ¢ = 10 ms
(steady-state due to viscous damping) with approximately 30% shortening in the
a-direction. In Fig. 7.2 (b), the convergence of the z-displacement u, of a corner
node (initially at = 1.0 mm, y = 0 mm) with respect to the mesh refinement
is depicted. Whilst keeping the viscous damping parameter at n = 0.003, the
spatial discretisation is varied between two and ten elements per side length.
After t = 10 ms of simulation time, we compare the displacement u, for the
different spatial discretisations. By refining the mesh, the z-displacement of
the corner node converges to approximately 0.708 mm. Based on the results
shown in Fig. 7.2 (b), the discretisation is set to 4% elements for the subsequent
investigations of the rectangular geometry.
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Figure 7.2: In (a), the deformed configuration of the geometry at ¢ = 10 ms
is depicted with an applied voltage difference A¢ = 0.8 V with
the viscous damping parameter n = 0.003. The convergence plot
in (b) shows the z-displacement u, of a corner node (initially at
z=1mm, y = 0 mm) on the free end at ¢ = 10 ms with the
viscous damping parameter n = 0.003 for different mesh sizes.
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(b) us for an undamped oscillation.

Figure 7.3: In (a), the displacement u, at ¢ = 10 ms is shown for a varying
electric potential difference A¢ with an additional mechanical
Dirichlet boundary condition (displacement u, = 0 mm) for all
nodes with y = 0 mm and y = 1.0 mm. The z-displacement plot
in (b) shows the undamped oscillation with n = 0.0 for A¢ = 0.3 V.
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Figure 7.4: The displacement u, for the edge node (x = 1.0 mm, y = 0 mm)
is shown for varying damping parameters 1 with an applied electric
potential difference of A¢ = 0.3 V.

In Fig. 7.3 (a), the displacement u, for the corner node (z = 1.0 mm, y = 0 mm)
is shown for a varying potential difference A¢ € {0.1,0.2,0.3,0.4,0.6,0.8,1.0} V.
An additional mechanical boundary condition (displacement u,, = 0 mm) for all
nodes with y = 0 mm and y = 1.0 mm is applied. The displacement u, is mea-
sured at ¢ = 10 ms with a viscous damping parameter of 7 = 0.003. The charac-
teristics of the curve — nonlinear for small displacements, almost linear for larger
displacements — reflect the utilised Neo-Hookean material model in Eq. (6.13).
The plot in Fig. 7.3 (b) shows the displacement u, of the undamped system
(n = 0) for a time period of 10 ms. As expected for the undamped system,
oscillation can be observed. Neither numerical damping nor artificial energy
gain is present (no trend in the amplitude of uz), which shows the good energy
behaviour of the structure-preserving time integration.

In Fig. 7.4, the influence of the viscous material behaviour is shown. The
simulation setup from Fig. 7.3 with an applied voltage difference A¢ = 0.3 V
is utilised. The plot visualises the displacement u, over a time period of
t = 10 ms with a time step of At = 2-107? ms. The viscous damping pa-
rameter is varied with n € {0.0,0.0002, 0.0005,0.001,0.002,0.003}. For zero
damping, i.e. n =0, Fig. 7.3 (b) is recovered. With an increasing parameter 7,
the amplitude of the oscillation starts to decrease. For a damping parameter
n = 0.003, the steady state is reached after approximately 4 ms.
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7 Artificial muscle model — dynamic viscoelastic electromechanical shell

Cylindrical geometry

e
Py Az

Figure 7.5: Deformed configuration of the cylindrical geometry (inner radius
r;=10 mm, outer radius 7,=20 mm, thickness h = 0.2 mm) is
depicted with an applied voltage difference A¢p = 10 V after
t = 20 ms.

In this section, the contraction of a cylindrical shape (inner radius ;=10 mm,
outer radius r,=20 mm, thickness shell &~ = 0.2 mm) is compared with data
from the literature, see [270] and Fig. 7.5. Due to the symmetry properties of
the geometry (rotationally symmetric with respect to the z-axis), it is suffi-
cient to consider one-quarter of the geometry as the computational domain.
Following [270], the geometry is discretised into 200 quadrilateral elements
— 10 elements in the radial and 20 elements in the circumferential direction,
respectively. The total simulation time is 20 ms with a time increment of
At =2-107" ms. The viscous damping parameter is 7 = 10. The mechanical
DoFs are fixed for all nodes at the inner boundary. Due to the symmetric
property, an additional mechanical Dirichlet boundary condition (displacement
g = 0 mm) for all nodes with coordinate z = 0 mm is applied. Similarly, the
displacement is set to uy, = 0 mm for all nodes with coordinate y = 0 mm.
The electrical boundary condition consists of an electric potential difference
A¢ =10 V with ¢, = —5 V on the inner radius and ¢,, =5 V on the outer
radius, see Fig. 7.5. The second electric DoF « is set to 0 V/mm in the whole
computational domain and thus the electric potential ¢ is constant along the
thickness direction. The material model in Eq. (6.13) as well as the material
parameters in Tab. 7.1 coincide with [270].
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7.3 Numerical examples

In Fig. 7.6, the temporal evolution of the radial displacement r is depicted for
all nodes with # = 0 mm (11 nodes). In other words, the radial displacement r
is shown for all nodes along the radial direction from the inner radius r; = 10
mm to the outer radius r, = 20 mm. Due to the viscoelastic effect, the system

—— r0=20 mm —— rp=19 mm ro=18 mm —— rp=17 mm
— r0=16 mm ro=15 mm —— ro=14 mm —— rg=13 mm
—— ro=12 mm ro=11 mm —— rp=10 mm
T T T T
0
71 :
&
< —2f =
3 i
I I I I
0 4 8 12 16 20
Time (ms)

Figure 7.6: The displacement plot shows the temporal evolution of the nodal
displacement r in a radial direction along the boundary (z = 0) for
different initial radii ro € [rs, ra].

reaches the steady state after approximately 12 ms. It is worth noting that
the radial displacement r is not uniformly increasing along the radial direction
(the larger the initial radius r¢ (here ro denotes the radial position of a node
in the undeformed configuration), the smaller the distance between the lines).
This is plausible, as the electric potential distribution along the radial direction
is nonlinear (see Fig. 7.5 and Fig. 7.7 (b)). The nonlinear electric potential
distribution originates from the difference in the cross-sectional area between
the inner and outer radius. Consequently, the nonlinear electric potential
distribution leads to a non-homogeneous gradient field of the electric potential
¢ and thus to a non-uniform contraction along the radial direction (higher
gradient and electric field E° for smaller ro and thus larger contraction).

In Fig. 7.7 (a) and (b), the results are compared with the study in [270],
wherein the same geometry and material model is considered (without dynam-
ics). In Fig. 7.7 (a), the radial displacement r is plotted over the initial radius
ro for all nodes (A) along the radial direction with the coordinate x = 0 mm
at t = 20 ms (endpoints in Fig. 7.6). The graph (-) is extracted from "Figure
2. Displacement under electric potential loading A¢ = 10 V." in [270]. The
nodal r-displacements (A) show a good agreement with the results in [270].
In Fig. 7.7 (b), the electric potential ¢ is plotted over the initial radius 7o
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Figure 7.7:

(b) ¢ over initial radius rg.

In (a), the r-displacement is shown over the initial radius ro for

all nodes (A) along the radial direction with z = 0 at ¢ = 20 ms.
The results are compared with literature data [270] and show
a very good agreement. In (b), the nonlinear electric potential
distribution over the initial radius 7o is presented. Even with a
reduction to 3 elements in the radial direction and 6 elements in
the circumferential direction, see (), the results for (a) and (b)
still agree well with the literature data.

for all nodes (A) along the radial direction with the coordinate z = 0 mm
at ¢ = 20 ms. The graph () is extracted from "Figure 3. Electric potential
distribution under electric potential loading A¢ = 10 V." in [270]. The nodal
electric potentials (A) show a good agreement with the results in [270]. It is
noteworthy that the results in Fig. 7.7 still agree well even when the spatial
discretisation is significantly coarsened (3 elements in radial direction and 6
s-18).

elements in circumferential direction), see (

Cylindrical geometry — mimicking the inflation of a hemisphere

When coupling the support system (dielectric hemisphere) with the cardio-
vascular system (myocardial muscle), due to the inflation of the hemisphere,
the pressure acting on the pericardium of the heart can be controlled via
the applied electric potential ¢. Thus the systolic and diastolic phases of
the cardiac cycle can be supported. In order to mimic a support system for
the cardiovascular system based on an artificial muscle/dielectric material,
a simplified geometry in the form of a thin-walled hemisphere is considered.
The geometry of the 3D thin-walled hemisphere is further simplified by a 2D
cross-sectional representation and making use of the symmetry, reducing to the
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(a) undeformed and deformed configu- (b) 3D visualisation.
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Figure 7.8: In (a), the undeformed and deformed configurations are depicted
for the cylindrical geometry mimicking a cross-section of an inflated
hemisphere. In (b), the undeformed and deformed configurations
from (a) are visualised in 3D via multiple cross-sections.

well-known cylindrical geometry from the previous section (see Fig. 7.8). Such
an artificial muscle-based support system is capable of supporting the cardio-
vascular system during systole and diastole (positive and negative pressure
on the pericardium; see [184] and also Fig. 7.9 (b)). The inner radius of the
cylindrical geometry is given by ;=23 mm, the outer radius r,=28 mm, and
the thickness h = 0.2mm. The geometry is discretised with 28 quadrilateral
elements with 2 elements in the radial and 14 elements in the circumferential
direction, respectively. The damping parameter is set to n = 30, the time
increment is At = 2- 107! ms and the total simulation time is 200 ms. Due
to the symmetric property, a mechanical Dirichlet boundary condition (dis-
placement u, = 0 mm) for all nodes with coordinate x = 0 mm is applied.
Similarly, the displacement is set to u, = 0 mm for all nodes with coordinate
z = 0 mm. The electrical boundary condition consists of an electric potential
difference A¢ = 7 V with ¢, = —3.5 V on the inner radius and ¢,, = 3.5 V on
the outer radius, see Fig. 7.8. The second electric DoF « is set to 0 V/mm in
the whole computational domain and thus the electric potential ¢ is constant
along the thickness direction. The bulk modulus x = 70 MPa is utilised in
order to increase the incompressibility of the material. In Fig. 7.8 (a) and (b),
the undeformed and deformed configurations of the cylindrical geometry are
presented at a time ¢ = 200 ms. In Fig. 7.8 (a), concentric inflation can be ob-
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served with the initial inner radius r; increasing from 23 mm to 35.93 mm. The
initial wall thickness t,, = ro — r; = 5 mm reduces to approximately 3.09 mm.
In Fig. 7.8 (b) and in Fig. 7.9 (a), the 3D representation of the hemisphere is
visualised by plotting multiple cross-sections around the z-axis. In Fig. 7.10,
the radius of the inflated hemisphere, as well as the volume, are presented for
increasing electric potential difference A¢ € {1.0,2.0,3.0,4.0,5.0,6.0,7.0} V.
The characteristic change of the radius w.r.t. the increase of electric potential
(nonlinear for small A¢, almost linear for larger A¢), reflects the utilised
Neo-Hookean material model in Eq. (6.13). The volume of the hemisphere is
given by Vihe = 2 - 7 - 3 and thus a cubic relation between the volume V. and

3
the radius r; holds. The volume V},. increases from 25.48 ml up to 97.39 ml.
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2 (mm)

-20 -20
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(a) visualisation of layers. (b) support system.

Figure 7.9: In (a), the deformed cross-section is plotted multiple times by
a rotation around the z-axis to provide a 3D impression of the
hemisphere. In (b), the deformed and undeformed configurations,
including a dummy heart, are depicted.

40 — 100

radius r; (mm)
Volume Vje (ml)

Figure 7.10: Radius r; as well as the volume V}. of the inflated hemisphere
over the electric potential difference Adg.
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Spherical geometry — hemisphere with 18° hole
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ration

Figure 7.11: In (a), the undeformed and deformed configuration for the hemi-
sphere with an 18° hole are shown. Due to the symmetry of the
problem, the computational domain can be reduced to one-quarter
of the hemisphere, see (b).

In this section, the geometry of a hemisphere with an 18° hole (measured with
respect to the z-axis) is considered, which is a standard test in linear and
non-linear shell analysis (pinched hemisphere; e.g., [294, 295, 296]). Due to
the symmetry properties of the hemisphere, only one-quarter of the geometry
is considered as the computational domain, see 7.11 (b). The radius of the
hemisphere is 7=16.77 mm with a thickness of h = 0.2mm. All translational
DoFs are fixed for nodes with coordinate z=0 mm. Due to the symmetric
property, a mechanical Dirichlet boundary condition (displacement u, = 0 mm)
for all nodes with coordinate x = 0 mm is applied. Similarly, the displacement
is set to uy = 0 mm for all nodes with coordinate y = 0 mm. The electrical
boundary condition consists of an electric potential difference A¢ = 80 V with
¢m = —40.0 V for nodes with coordinate z=0 mm and ¢,, = 40.0 V at the
boundary of the 18° hole, see Fig. 7.11. The second electric DoF « is set to
0 V/mm in the whole computational domain and thus the electric potential ¢ is
constant along the thickness direction. This 3D geometry imitates the dynamic
viscoelastic dielectric thin-walled support system. The geometry is discretised
with 20 quadrilateral elements with 4 elements in the azimuthal direction and
5 elements in the polar direction, respectively. The simulation time is 500 ms
with a time increment At = 8 - 10~ ms. The damping parameter is 1 = 30.
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In Fig. 7.11 (a) and (b), the deformed and undeformed configurations after
a time period of 500 ms are visualised. A shortening in z-direction can be
observed. In terms of the support system, this would cause a positive pressure
acting on the pericardium of the heart. In Fig. 7.12 (b), the z-displacement
u of the six nodes in the polar direction (all nodes with coordinate z = 0) is
shown. Additionally, the plot shows the damping due to the viscous material
behaviour and thus a steady state is reached after approximately 250 ms. In
Fig. 7.12 (a), the nonlinear electric potential distribution along the polar
direction is depicted together with a reference solution (meshed with a 4-node
quadrilateral shell element, namely DS4) from a commercial CAE software
(Abaqus). The potential distribution, based on the six nodes in the polar
direction (A), shows a good agreement with the reference solution ().

’ —k— reference —4— shell ‘ —Npo=6—"nNpo =5
Nno = 4— Nno = 3
— Nnpo = 2 Nno = 1
1 T T T T
0
0.5 - n
~ E .
zZ ot 4 & !
© S
—0.5| . —2 i
1 \ | -3 | | | |
0 0.5 1 0 100 200 300 400 500
angle (rad) Time (ms)
(a) electric potential distribution. (b) z-displacement.

Figure 7.12: In (a), the nonlinear electric potential distribution along the polar
direction is visualised. In (b), the z-displacement of the six nodes
in the polar direction (all nodes with coordinate z = 0) is shown
for a viscous damping parameter n = 30.
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7.3.2 Bending

In this section, the deformation state of bending is induced by a proper choice
of electrical boundary conditions. For this purpose, a rectangular geometry
with the dimension 4.0 mm x 0.2 mm and a thickness of h = 0.02 mm is utilised
(see Fig. 7.13. At x=0 mm, all mechanical DoFs are fixed). Additionally, for
all nodes with y=0 mm and y=0.2 mm, the translational DoF in y-direction
is constrained to zero. The geometry is discretised with 320 quadrilateral
elements with 4 elements in y-direction and 80 elements in z-direction, re-
spectively. Assuming the node labeling in Fig. 7.14, for all nodes with index
i=2,4,..,78,80 and j = 1,2, 3,4,5, the electrical potential ¢,, on the mid
surface is set to ¢, = 30 V. The second electrical DoF «, which controls the
transmural electric potential change, is set to a = 400 V/mm. For all nodes
with index ¢ = 1,3,...,79,81 and j = 1,2, 3,4, 5, the electrical potential ¢,
on the mid surface is set to ¢, = 0 V. The second electrical DoF « is set to
a =0 V/mm. See also Tab. 7.2 for a brief summary of the electrical boundary
conditions. Due to the coupling between the shear and bending deformation
via the material model in Eq. (6.13), pure bending can not be achieved. Thus,
a simplified material model is proposed

100 Opm 0
Qe, ¢) = 7€T Ises €+ % €11 + (97; T K11 (7.73)
—_——
w,

mech Wele

The total simulation time is set to 20 ms with a time increment At = 2- 1072 ms.
The viscous damping parameter is = 3.

In Fig. 7.13, the deformed configuration is presented at different time points
t € {0,1,4,6,20} ms. In Fig. 7.15 (a) and (b), the displacement in z-direction
over the z-coordinate, as well as the displacement of the tip node (x=4.0 mm,
y=0 mm ) in z-direction over time, are depicted. The total displacement of
the tip node in the z-direction of -0.45 mm is reached after approximately 10
ms when the system has reached the steady state.

Table 7.2: Electrical boundary conditions for bending deformation.

node index dm (V) a (V/mm)
nodes in z-direction; activated i=2,4,...,78,80 30 400
nodes in z-direction; non-activated 1=1,3,...,79,81 0 0
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x z(mm)

Figure 7.13: Deformed configuration of the bent shell at different time nodes
t € {0,1,4,6,20} ms. The top plot shows the spatial configuration
at ¢ = 20 ms.
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Figure 7.14: Node labeling for the electrical boundary conditions.
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Figure 7.15: In (a), the displacement u. in the z-direction over the z-coordinate
is visualised. In (b), the displacement of the tip node (z = 4.0 mm,
y = 0 mm) over the simulation time of 20 ms is depicted.
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7 Artificial muscle model — dynamic viscoelastic electromechanical shell

7.4 Summary

The local Euler-Lagrange equations are derived for the underlying variational
principle of virtual work. The variational formulation of the dynamic vis-
coelastic electromechanical shell is derived based on the Lagrange-d’Alembert
principle. Numerical examples including different geometries (rectangular,
cylindrical, spherical) as well as deformation states (contraction, bending)
are presented. For the simple benchmark problems like the contraction of
the cylindrical geometry, the results show a good agreement with data from
the literature. The variational time integration derived in the Lagrangian
setting ensures good long-term energy behaviour. We have shown that the
implemented shell formulation is generally suitable to simulate a heart support
system consisting of a thin dielectric material. However, the implementation
of the variational principle of Hu-Washizu could be a promising next step to
resolve well-known issues for pure displacement-based shell formulations e.g.
locking (especially shear and membrane locking) and to include important
features when considering dielectric elastomeric materials (thickness strains).
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8 Conclusions

Findings This work contributes to the field of modelling and simulation of
both cardiac and artificial muscles. A new robust, efficient and more accurate
Laplace-Dirichlet-Rule-Base-Method (LDRBM) for computing the orthotropic
cardiac tissue structure on complex unstructured finite element meshes has
been developed (objective I.1.). The proposed method is based on the devel-
opment of a discontinuous Galerkin framework which shows the capability of
accurately computing the transmural path (objective I.I.A.) and wall thick-
ness (objective L.I.B.). The finite element-based framework has the essential
benefits that the transmural thickness and depth can be instantly computed
on the unstructured tetrahedral mesh of the subsequent electromechanical
simulation, in other words, it is not limited to structured meshes in the finite
difference framework and therefore allows, due to the modularity of the frame-
work, a straightforward integration into existing LDRBMs (e.g. [167, 169]).
Additionally, the proposed regional transmural fibre and sheet rules based on
diffusion tensor magnetic resonance imaging (DT-MRI) measurements of the
left ventricle show a significantly improved fit to DT-MRI data compared to
e.g. existing 2-parameter functions [166] and can readily be used in established
rule-based methods (RBMs) (objective I.I.C.). Moreover, the comparison with
existing LDRBMSs shows a significant method-dependent transmural tissue ori-
entation with improved accuracy for the proposed LDRBM (objective 1.I.D.).
The study about the influence of the orthotropic tissue orientation on the
overall cardiac function (based on defined important cardiac characteristics,
including local myofibre orientation and global characteristics as well as local
characteristics) show that the local fibre orientation in the patient-specific left
ventricle differs significantly for all methods. Despite the significant difference
in the local myofibre orientation, a more diverse picture is observed in terms
of the global cardiac characteristics. While the myocardial volume reduction
and peak pressure exhibit a rather insensitive behaviour to a change in the
LDRBM, the apical shortening, as well as the fractional wall thickening, react
sensitively to a change in myofibre orientation. The ejection fraction shows a
moderate sensitivity. The local cardiac characteristics, fibre stress and strain,
seem to be highly sensitive, and in general more than the global characteristics
(objective LIL.).

The variational formulation of the dynamic, viscoelastic, electromechanical
shell is derived from the Lagrange-d’Alembert principle including structure-
preserving time integration (objectives IL.I.A.-D.). Numerical examples in-
cluding different geometries (rectangular, cylindrical, spherical), as well as
deformation states (contraction, bending), are presented (objective ILIIL.).
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8 Conclusions

The variational time integration derived in the Lagrangian setting ensures
good long-term energy behaviour. As a potential next step, the integration
of additional thickness strains, the formulation can be extended to the vari-
ational principle of Hu-Washizu. Overall, the initial results of the proposed
shell formulation show that it is a promising choice to simulate the dynamic,
viscoelastic, electromechanical characteristics of a DEA-based CaAD.

Relevance The proposed LDRBM has a wide field of application and is not
limited to cardiac modelling. Possible applications include studying fibre-
reinforced materials or other muscular biological tissue. Moreover, such a
robust, efficient and accurate method to determine the transmural path/arc
length can find application wherever an accurate assessment of the wall thick-
ness in complex 3D domains is necessary (e.g. cortical thickness). Additionally,
by considering the significance of transmural thickness as a crucial cardiac
risk indicator in the clinical setting, the 3D thickness assessment within the
LDRBM framework can be readily applied to patient imaging data in the clinic
or during the electromechanically coupled finite element simulation. This is
made possible by the user-friendly implementation facilitated by FEniCS and
thus opens new opportunities in clinical application or post-processing. In
other words, this allows for the instant 3D thickness assessment in the whole
cardiac domain and the tedious and time-consuming task of measuring the wall
thickness at single regions of interest is eliminated. As previously mentioned,
a major advantage of the new LDRBM framework is the modularity of the
method allowing for simple integration of the thickness assessment as well as
the novel fibre and sheet rules into established LDRBMs. It is worth noting
that, for all rule-based approaches, a common convention is needed, on how the
transmural depth is defined during experimental observation (e.g., DT-MRI)
and in computational models. Without such a convention, the fibre and sheet
rules based on the transmural depth are not consistent between measurement
and modelling. The electromechanical simulations underline the influence of
the orthotropic tissue structure models on cardiac function. Even though we
limited the study to a small subset of related tissue structure models (LDRBMs)
and supposedly the same transmural orientation (o = +60°, 8 = 0°, Laplace
equation-based transmural interpolation), one can observe significant differ-
ences w.r.t. the local myofibre orientation. Therefore, caution is advised when
comparing studies with different orthotropic tissue structure models, even if
they supposedly have the same transmural orientation (e.g., for the prediction
of the myocardial volume reduction), the three LDRBMs, B-RBM, H-RBM
and W-RBM, predict similar results (i.e., a comparison among studies with
different orthotropic tissue structure models B-RBM, H-RBM and W-RBM
is feasible). For the prediction of local characteristics such as fibre stress or
fibre strain, the results seem to be very sensitive w.r.t. the local myofibre
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orientation (i.e., a comparison among studies with different orthotropic tissue
structure models B-RBM, H-RBM and W-RBM is not feasible).

The developed shell formulation is the first dynamic, viscoelastic, electrome-
chanical formulation including structure-preserving time integration. Due
to the well-known reduced computational complexity of shell formulations
compared to complex 3D finite element models, the formulation can be effi-
ciently applied in time-demanding model predictions for thin-walled dielectric
actuators. Moreover, the formulation could be a valuable supplement in a wide
field of applications including artificial muscles, energy harvesting, biomedical
devices etc. Further, the proposed formulation can be easily integrated into
multibody systems or optimal control problems.

Prospects The proposed LDRBM is currently limited to individual ventricular
geometries. The approach can be extended to more complex geometrical models
(e.g. whole heart or biventricular geometries, complex endocardial structures
like papillary muscles or trabeculations, see e.g. [167]). For the determined
regional fibre and sheet angle rules, a smoothing algorithm across the interface
of different subregions is needed to avoid non-smooth orientations, which can
cause numerical issues during electromechanical simulation. The formulation
of the shell model based on the variational principle of Hu-Washizu is a
promising next step to resolve well-known issues for pure displacement-based
shell formulations (e.g. locking, and especially shear and membrane locking)
and allow for thickness strains when considering dielectric elastomeric materials
with large in-plane expansion and thickness compression (e.g., [285]). Another
important step is the validation of the dielectric elastomer shell model via
experiments. In the future, the coupling of the DEA-based shell model with
the cardiac tissue model is an interesting next step to better understand their
interaction. This can be further advanced by extending the model with optimal
control to optimally support the heart during systole and diastole, depending
on the degree of severity of the pathology, physical activity of the patient, etc.
In the long run, the model can be utilised to establish a clinical workflow,
coupling patient-specific data (e.g. CT data) with the model and thus to
develop and manufacture patient-specific assist devices.
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