Thomas Leitz
Thomas Leitz
- 
- 2011 Dipl.-Ing., Diploma in Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg
 - 
- 2011 – 2019 Doctoral candidate, Institute of Applied Dynamics, Friedrich-Alexander-Universität Erlangen-Nürnberg
 
 
- 
theses
2022
- :
 Galerkin Lie group variational integrators (Dissertation, 2022)
2011
- :
 Ein numerisches Verfahren zur Berechnung des elastohydrodynamischen Kontakts rauer Oberflächen (Diploma thesis, 2011)
reviewed journal publications
2021
- , , :
 Multisymplectic Galerkin Lie group variational integrators for geometrically exact beam dynamics based on unit dual quaternion interpolation — no shear locking
 In: Computer Methods in Applied Mechanics and Engineering 374 (2021), p. 113475
 ISSN: 0045-7825
 DOI: 10.1016/j.cma.2020.113475
 URL: https://www.sciencedirect.com/science/article/pii/S0045782520306605
2018
- , :
 Galerkin Lie-group variational integrators based on unit quaternion interpolation
 In: Computer Methods in Applied Mechanics and Engineering 338 (2018), p. 333-361
 ISSN: 0045-7825
 DOI: 10.1016/j.cma.2018.04.022
2014
- , , :
 Variational Lie group formulation of geometrically exact beam dynamics: synchronous and asynchronous integration
 In: Computational Methods in Applied Sciences, Berlin: Springer, 2014, p. 175-203
 DOI: 10.1007/978-3-319-07260-9_8
conferences and proceedings
2021
- , , :
 Galerkin variational integration of the geometrically exact beam via unit dual quaternion interpolation
 conference, GAMM Annual Meeting (Kassel, 2021-03-15 - 2021-03-19)
2017
- , :
 On unit-quaternion based Galerkin Lie group variational integrators
 Foundations of Computational Mathematics (FoCM) (Barcelona, 2017-07-10 - 2017-07-12)
2016
- , :
 Multisymplectic variational (Lie group) integrators for PDEs of geometrically exact beam dynamics using algorithmic differentiation
 GAMM Annual Meeting (Braunschweig, 2016-03-07 - 2016-03-11)
 In: Proc. Appl. Math. Mech (PAMM) 2016
 DOI: 10.1002/pamm.201610364
2014
- , :
 Simulating underactuated multibody dynamics using servo constraints and variational integrators
 GAMM Annual Meeting (Erlangen, 2014-03-10 - 2014-03-14)
 In: Proc. Appl. Math. Mech. (PAMM) 2014
 DOI: 10.1002/pamm.201410018
- , , :
 Variational integrators for dynamical systems with rotational degrees of freedom
 WCCM XI – ECCM V – ECFD VI (Barcelona, 2014-07-20 - 2014-07-25)
 In: Proceedings of WCCM XI – ECCM V – ECFD VI 2014
2013
- , , , , , :
 Asynchronous variational Lie group integration for geometrically exact beam dynamics
 GAMM Annual Meeting (Novi Sad, 2013-03-18 - 2013-03-22)
 In: Proc. Appl. Math. Mech (PAMM) 2013
 DOI: 10.1002/pamm.201310018
- , , , , , :
 Asynchronous variational Lie group integration for geometrically exact beam dynamics
 ECCOMAS Thematic Conference on Mutlibody Dynamics (Zagreb, 2013-07-01 - 2013-07-04)
 In: Proceedings of the ECCOMAS Thematic Conference on Mutlibody Dynamics 2013
2012
- , :
 Simulation of the elastohydrodynamic contact with a piezo-viscous fluid
 GAMM Annual Meeting (Darmstadt, 2012-03-26 - 2012-03-30)
 In: Proc. Appl. Math. Mech. (PAMM) 2012
further publications
- 
Space time discretization for flexible multibody systems and multisymplectic variational integrators(Own Funds) Term: 2011-10-01 - 2018-09-30Variational integrators are based on the discretization of the variational principle. It is applied to an approximation of the action functional and results in the discrete Euler-Lagrange equations. If space time is discretized in one step, the resulting integrator is multisymplectic, i.e. symplectic in both space and time.Those integrators are suitable for the simulation of flexible multibody systems including beams, shells and 3D continua. Some of the symmetries present in the continuous system are carried over to the discrete setting which leads to the conservation of the associated discrete momentum maps. Furthermore, variational integrators show a very good energy behaviour, i.e. they do not artificially dissipate or gain total energy in a conservative system.
No matching records found.

