• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Institute of Applied Dynamics
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau

Institute of Applied Dynamics

Navigation Navigation close
  • institute
    • team
    • alumni
    • open positions
    • contact
    portal institute
  • research
    • multibody dynamics and robotics
    • biomechanics
    • motion capturing
    • structure preserving simulation and optimal control
    • publications
    • projects
    • equipment
    portal research
  • teaching
    • courses
    • student theses
    portal teaching
  1. Home
  2. LTD
  3. institute
  4. alumni
  5. Leitz, Thomas

Leitz, Thomas

In page navigation: LTD
  • institute
    • team
    • alumni
      • Bach, Nathanael
      • Bentaleb, Toufik
      • Budday, Dominik
      • Duong, Minh Tuan
      • Gail, Tobias
      • Glaas, Daniel
      • Hahn, Verena
      • Hegen, Beate
      • Hoffmann, Ramona
      • Holz, David
      • Huang, Dengpeng
      • Klebl, Michael
      • Koch, Michael
      • Kondratieva, Natalia
      • Kosmas, Odysseas
      • Lang, Holger
      • Lässig, Sven
      • Leitz, Thomas
      • Mahmud-Munir Hanna
      • Martonová, Denisa
      • Penner, Johann
      • Phansalkar, Dhananjay
      • Phutane, Uday
      • Ringkamp, Maik
      • Rößler, Johannes
      • Scheiterer, Eduard Sebastian
      • Schlögl, Tristan
      • Schubert, Matthias
      • Stavole, Martina
      • Szemenyei, Flóra
      • Wenger, Theresa
    • open positions
    • contact
  • research
  • teaching

Leitz, Thomas

Dipl.-Ing.

Thomas Leitz

Thomas Leitz
Thomas Leitz
Immerwahrstrasse 1
91058 Erlangen
Deutschland
  • Email: thomas.leitz@fau.de

    • 2011 Dipl.-Ing., Diploma in Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg
      • 2011 – 2019 Doctoral candidate, Institute of Applied Dynamics, Friedrich-Alexander-Universität Erlangen-Nürnberg

theses

2022

  • Leitz T.:
    Galerkin Lie group variational integrators (Dissertation, 2022)

2011

  • Leitz T.:
    Ein numerisches Verfahren zur Berechnung des elastohydrodynamischen Kontakts rauer Oberflächen (Diploma thesis, 2011)

 

reviewed journal publications

2021

  • Leitz T., Sato Martin de Almagro R., Leyendecker S.:
    Multisymplectic Galerkin Lie group variational integrators for geometrically exact beam dynamics based on unit dual quaternion interpolation — no shear locking
    In: Computer Methods in Applied Mechanics and Engineering 374 (2021), p. 113475
    ISSN: 0045-7825
    DOI: 10.1016/j.cma.2020.113475
    URL: https://www.sciencedirect.com/science/article/pii/S0045782520306605

2018

  • Leitz T., Leyendecker S.:
    Galerkin Lie-group variational integrators based on unit quaternion interpolation
    In: Computer Methods in Applied Mechanics and Engineering 338 (2018), p. 333-361
    ISSN: 0045-7825
    DOI: 10.1016/j.cma.2018.04.022

2014

  • Leitz T., Ober-Blöbaum S., Leyendecker S.:
    Variational Lie group formulation of geometrically exact beam dynamics: synchronous and asynchronous integration
    In: Computational Methods in Applied Sciences, Berlin: Springer, 2014, p. 175-203
    DOI: 10.1007/978-3-319-07260-9_8

 

conferences and proceedings

2021

  • Leitz T., Sato Martin de Almagro R., Leyendecker S.:
    Galerkin variational integration of the geometrically exact beam via unit dual quaternion interpolation
    conference, GAMM Annual Meeting (Kassel, 2021-03-15 - 2021-03-19)

2017

  • Leitz T., Leyendecker S.:
    On unit-quaternion based Galerkin Lie group variational integrators
    Foundations of Computational Mathematics (FoCM) (Barcelona, 2017-07-10 - 2017-07-12)

2016

  • Leitz T., Leyendecker S.:
    Multisymplectic variational (Lie group) integrators for PDEs of geometrically exact beam dynamics using algorithmic differentiation
    GAMM Annual Meeting (Braunschweig, 2016-03-07 - 2016-03-11)
    In: Proc. Appl. Math. Mech (PAMM) 2016
    DOI: 10.1002/pamm.201610364

2014

  • Leitz T., Leyendecker S.:
    Simulating underactuated multibody dynamics using servo constraints and variational integrators
    GAMM Annual Meeting (Erlangen, 2014-03-10 - 2014-03-14)
    In: Proc. Appl. Math. Mech. (PAMM) 2014
    DOI: 10.1002/pamm.201410018
  • Leitz T., Leyendecker S., Ober-Blöbaum S.:
    Variational integrators for dynamical systems with rotational degrees of freedom
    WCCM XI – ECCM V – ECFD VI (Barcelona, 2014-07-20 - 2014-07-25)
    In: Proceedings of WCCM XI – ECCM V – ECFD VI 2014

2013

  • Demoures F., Gay-Balmaz F., Leitz T., Leyendecker S., Ober-Blöbaum S., Ratiu TS.:
    Asynchronous variational Lie group integration for geometrically exact beam dynamics
    GAMM Annual Meeting (Novi Sad, 2013-03-18 - 2013-03-22)
    In: Proc. Appl. Math. Mech (PAMM) 2013
    DOI: 10.1002/pamm.201310018
  • Demoures F., Gay-Balmaz F., Leitz T., Leyendecker S., Ober-Blöbaum S., Ratiu TS.:
    Asynchronous variational Lie group integration for geometrically exact beam dynamics
    ECCOMAS Thematic Conference on Mutlibody Dynamics (Zagreb, 2013-07-01 - 2013-07-04)
    In: Proceedings of the ECCOMAS Thematic Conference on Mutlibody Dynamics 2013

2012

  • Leitz T., Willner K.:
    Simulation of the elastohydrodynamic contact with a piezo-viscous fluid
    GAMM Annual Meeting (Darmstadt, 2012-03-26 - 2012-03-30)
    In: Proc. Appl. Math. Mech. (PAMM) 2012

 

further publications

 

  • Space time discretization for flexible multibody systems and multisymplectic variational integrators

    (Own Funds)

    Term: 2011-10-01 - 2018-09-30
    Abstract

    Variational integrators are based on the discretization of the variational principle. It is applied to an approximation of the action functional and results in the discrete Euler-Lagrange equations. If space time is discretized in one step, the resulting integrator is multisymplectic, i.e. symplectic in both space and time.Those integrators are suitable for the simulation of flexible multibody systems including beams, shells and 3D continua. Some of the symmetries present in the continuous system are carried over to the discrete setting which leads to the conservation of the associated discrete momentum maps. Furthermore, variational integrators show a very good energy behaviour, i.e. they do not artificially dissipate or gain total energy in a conservative system.

    →More information

No matching records found.

Institute of Applied Dynamics
Friedrich-Alexander-Universität Erlangen-Nürnberg

Immerwahrstrasse 1
91058 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up