• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Institute of Applied Dynamics
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau

Institute of Applied Dynamics

Navigation Navigation close
  • institute
    • team
    • alumni
    • open positions
    • contact
    portal institute
  • research
    • multibody dynamics and robotics
    • biomechanics
    • motion capturing
    • structure preserving simulation and optimal control
    • publications
    • projects
    • equipment
    portal research
  • teaching
    • courses
    • student theses
    portal teaching
  1. Home
  2. LTD
  3. institute
  4. team
  5. Jadhav, Deepak Balasaheb

Jadhav, Deepak Balasaheb

In page navigation: LTD
  • institute
    • team
      • Amer, Gamal
      • Capobianco, Giuseppe
      • Chen, Ruby
      • Chen, Xiyu
      • Coppers, Birte
      • Ebner, Ines
      • Fleischmann, Elisa
      • Heinrich, Simon
      • Jadhav, Deepak Balasaheb
      • Konopik, Michael
      • Leyendecker, Sigrid
      • Lohmayer, Markus
      • Prateek, Prateek
      • Sato Martín de Almagro, Rodrigo Takuro
      • Wang, Tengman
    • alumni
    • open positions
    • contact
  • research
  • teaching

Jadhav, Deepak Balasaheb

Deepak Balasaheb Jadhav, M. Sc.

Deepak Jadhav
doctoral candidate

Department of Mechanical Engineering
Institute of Applied Dynamics (LTD, Prof. Leyendecker)

Room: Room 01.016
Immerwahrstraße 1
91058 Erlangen
  • Phone number: +49 9131 85-61002
  • Fax number: +49 9131 85-61018
  • Email: deepak.jadhav@fau.de
  • Website: https://www.ltd.tf.fau.de/person/deepak-jadhav/

  • 2014 – 2018 B.Eng. in Mechanical Engineering, Savitribai Phule Pune University, Pune, India
  • 2019 – 2022 M.Sc. in Computational Mechanics, University of Duisburg-Essen
  • 2022 –  doctoral candidate, Institute of Applied Dynamics, Friedrich-Alexander Universität Erlangen-Nürnberg

reviewed journal publications

2025

  • Jadhav D., Phansalkar D., Weinberg K., Ortiz M., Leyendecker S.:
    A New Approach to Asynchronous Variational Integrators for a Phase Field Model of Dynamic Fracture
    In: International Journal for Numerical Methods in Engineering (2025)
    ISSN: 0029-5981
    DOI: 10.1002/nme.70025

2023

  • Phansalkar D., Jadhav D., Weinberg K., Ortiz M., Leyendecker S.:
    Extension of the spatially adaptive phase-field model to various forms of fracture
    In: Forces in Mechanics 10 (2023), Article No.: 100161
    ISSN: 2666-3597
    DOI: 10.1016/j.finmec.2022.100161

conferences and proceedings

2025

  • Jadhav D., Phansalkar D., Weinberg K., Ortiz M., Leyendecker S.:
    Computational efficiency of dynamic phase field fracture simulations using a new asynchronous variational integrator
    conference, GAMM PF 25 and Materials/Microstructure modelling: Analytics & Benchmarks (Karlsruhe, 2025-02-12 - 2025-02-14)

2024

  • Jadhav D., Phansalkar D., Weinberg K., Ortiz M., Leyendecker S.:
    A spatially adaptive phase field model for static and dynamic fracture
    conference, IUTAM Symposium Computational Fracture Mechanics in Multi- Field Problems (Bad Honnef, 2024-12-08 - 2024-12-13)
  • Jadhav D., Phansalkar D., Weinberg K., Ortiz M., Leyendecker S.:
    Simulating Dynamic Phase Field Fracture using a New Asynchronous Variational Integrator
    conference, 10th FRASCAL seminar (Erlangen, 2024-10-25)
  • Jadhav D., Weinberg K., Ortiz M., Leyendecker S.:
    Phase Field Modeling of Dynamic Fracture using a Modified Asynchronous Variational Integrator
    conference, European Conference on Fracture 2024 (Zagreb, 2024-08-26 - 2024-08-30)

2023

  • Jadhav D., Leyendecker S.:
    Asynchronous Variational Integrators for Elastodynamics and for a Phase Field Model of Dynamic Fracture
    conference, 3rd RTG Retreat (Bad Staffelstein, 2023-11-17 - 2023-11-18)
  • Jadhav D., Phansalkar D., Leyendecker S.:
    Numerical illustration of Γ-convergence for variational integrators
    conference, 8th FRASCAL seminar (Erlangen, 2023-04-28)
  • Jadhav D., Phansalkar D., Weinberg K., Ortiz M., Leyendecker S.:
    Investigation of different forms of fracture using a spatially adaptive phase-field model
    conference, 8th GAMM Workshop on Phase-field modeling (ETH Zürich, 2023-02-06 - 2023-02-07)
  • Mühl C., Jadhav D., Ramakrishnan AN., Schwan S., Klauke F., Hofmann GO., Mendel T.:
    Etablierung eines Finite-Elemente-Modells zur Darstellung des Patienten-spezifischen Risikos für osteoporotische Frakturen des Sakrums während Alltagsaktivitäten
    conference, Deutscher Kongress für Orthopädie und Unfallchirurgie (Berlin, 2023-10-24 - 2023-10-27)

2022

  • Jadhav D., Phansalkar D., Leyendecker S.:
    Finite Element Modeling of Osteoporotic Pelvic Ring and Extension of Project P9 into temporal adaptivity
    conference, 2nd RTG Retreat of FRASCAL (Bad Windsheim, 2022-05-05 - 2022-05-06)

further publications

  • Teilprojekt P9 - Adaptive Dynamic Fracture Simulation

    (Third Party Funds Group – Sub project)

    Overall project: Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)
    Term: 2019-01-02 - 2027-12-31
    Funding source: DFG / Graduiertenkolleg (GRK)
    URL: https://www.frascal.research.fau.eu/home/research/p-9-adaptive-dynamic-fracture-simulation/
    Abstract

    In the simulation of continuum mechanical problems of materials with heterogeneities caused e.g. by a grained structure on a smaller scale compared to the overall dimension of the system, or by the propagation of discontinuities like cracks, the spatial meshes for finite element simulations are typically consisting of coarse elements to save computational costs in regions where less deformation is expected, as well as finely discretised areas to be able to resolve discontinuities and small scale phenomena in an accurate way. For transient problems, spatial mesh adaption has been the topic of intensive research and many strategies are available, which refine or coarsen the spatial mesh according to different criteria. However, the standard is to use the same time step for all degrees of freedom and adaptive time step controls are usually applied to the complete system.

    The aim of this project is to investigate the kinetics of heterogeneous, e.g. cracked material, in several steps by developing suitable combinations of spatial and temporal mesh adaption strategies.

    →More information

Institute of Applied Dynamics
Friedrich-Alexander-Universität Erlangen-Nürnberg

Immerwahrstrasse 1
91058 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up